

# Liebert®

NX™ UPS

Operation and Maintenance Manual — 225-600kVA, Three-Phase, Single-Module & Multi-Module The information contained in this document is subject to change without notice and may not be suitable for all applications. While every precaution has been taken to ensure the accuracy and completeness of this document, Vertiv assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Refer to other local practices or building codes as applicable for the correct methods, tools, and materials to be used in performing procedures not specifically described in this document.

The products covered by this instruction manual are manufactured and/or sold by Vertiv This document is the property of Vertiv and contains confidential and proprietary information owned by Vertiv. Any copying, use or disclosure of it without the written permission of Vertiv is strictly prohibited.

Names of companies and products are trademarks or registered trademarks of the respective companies. Any questions regarding usage of trademark names should be directed to the original manufacturer.

#### **Technical Support Site**

If you encounter any installation or operational issues with your product, check the pertinent section of this manual to see if the issue can be resolved by following outlined procedures. Visit https://www.VertivCo.com/en-us/support/ for additional assistance.

## **TABLE OF CONTENTS**

| IMP | ORTA  | NT SAFETY INSTRUCTIONS                                                                    | 1     |
|-----|-------|-------------------------------------------------------------------------------------------|-------|
| SAV | F THI | ESEINSTRUCTIONS                                                                           | . 1   |
| 4.0 |       |                                                                                           | ••••• |
| 1.0 | INT   | RODUCTION                                                                                 | 3     |
| 1.1 | Gene  | eral Description                                                                          | 3     |
| 1.2 | Mode  | es of Operation                                                                           | 4     |
|     | 1.2.1 | Normal Mode                                                                               | 4     |
|     | 1.2.2 | Eco Mode                                                                                  | 4     |
|     | 1.2.3 | Bypass Mode                                                                               | 4     |
|     | 1.2.4 | Battery Mode                                                                              | 4     |
|     | 1.2.5 | Maintenance Bypass                                                                        | 4     |
| 1.3 | Optic | ons                                                                                       | 5     |
| 2.0 | OPE   | RATION                                                                                    | 6     |
| 2.1 | Phys  | ical Layout of the UPS                                                                    | 6     |
| 2.2 | Inter | face Display Features                                                                     | 8     |
| 2.3 | Touc  | hscreen Navigation                                                                        | 10    |
|     | 2.3.1 | Main Display Screen                                                                       | 10    |
|     | 2.3.2 | Status                                                                                    | 11    |
|     | 2.3.3 | Events Log Menu                                                                           | 15    |
|     | 2.3.4 | Measures Menu                                                                             | 15    |
|     | 2.3.5 | Battery Menu                                                                              | 19    |
|     | 2.3.6 | LIFE <sup>™</sup> Menu                                                                    | 21    |
|     | 2.3.7 | Settings Menu                                                                             | 22    |
| 2.4 | Anim  | ated One-Line Mimic                                                                       | 23    |
|     | 2.4.1 | Functional Blocks                                                                         | 23    |
|     | 2.4.2 | About Menu                                                                                | 23    |
| 2.5 | Mode  | es of Operation                                                                           | 24    |
|     | 2.5.1 | Load on Bypass                                                                            | 24    |
|     | 2.5.2 | Normal Mode—Load on UPS                                                                   | 26    |
|     | 2.5.3 | Input Power Failure—Load on DC Source                                                     | 26    |
|     | 2.5.4 | Off DC Source                                                                             | 27    |
|     | 2.5.5 | Remote Emergency Power Off                                                                | 27    |
| 2.6 | Eco M | Mode Active                                                                               | 28    |
|     | 2.6.1 | Eco Mode Activation and Control                                                           | 28    |
|     | 2.6.2 | Active Eco Mode                                                                           | 28    |
|     | 2.6.3 | Normal—Active Eco Mode                                                                    | 28    |
|     | 2.6.4 | Inverter Stop—Active Eco Mode                                                             | 29    |
|     | 2.6.5 | Overload—Active Eco Mode                                                                  | 29    |
|     | 2.6.6 | Emergency—Due to Source Supply Failure or Variance Beyond Tolerance Limits, A<br>Eco Mode | ctive |
|     | 2.6.7 | Return to Normal Conditions-Active Eco Mode                                               | 29    |

| 2.7 | Manual Operations—All Systems                                                 | 29   |
|-----|-------------------------------------------------------------------------------|------|
|     | 2.7.1 Startup—Single Module System                                            | 32   |
|     | 2.7.2 Startup Single Module System from Maintenance Bypass                    | 34   |
|     | 2.7.3 Load Transfer and Retransfer—Single Module System                       | 35   |
|     | 2.7.4 Maintenance Bypass Load Transfers—Single Module System                  | 35   |
|     | 2.7.5 Shut Down Single Module UPS System.                                     | 37   |
|     | 2.7.6 Startup—1+N Multi-Module System with Maintenance Bypass Cabinet         | 37   |
|     | 2.7.7 Transfer the Load from UPS to Bypass: 1+N System                        | 38   |
|     | 2.7.8 Transfer Load from Bypass to UPS: 1+N Distributed Bypass System         | 38   |
|     | 2.7.9 Load Transfer-1+N System—Remove One UPS Module from System (Collective) | 39   |
|     | 2.7.10 Load Transfer-1+N System—Add One UPS Module to the System (Collective) | 39   |
|     | 2.7.11 De-Energize 1+N System With Maintenance Bypass Cabinet                 | . 40 |
| 2.8 | Automatic Operations                                                          | . 40 |
|     | 2.8.1 Overloads (Without Transfer)                                            | 41   |
|     | 2.8.2 Automatic Transfers to Bypass (Overload Condition)                      | 41   |
|     | 2.8.3 Automatic Transfers to Bypass, UPS System Faults                        | 42   |
|     | 2.8.4 Automatic Retransfers to UPS.                                           | 42   |
| 3.0 | UPS MESSAGES: STATUS, WARNING, FAULT                                          | 43   |
| 4.0 | CONNECTIVITY                                                                  | .52  |
| 4.1 | Network and BMS Connectivity and Monitoring                                   | 52   |
|     | 4.1.1 Determining the type of Card in Your System                             | 52   |
| 4.2 | Connection Points                                                             | 52   |
|     | 4.2.1 Available Selectable Input Contacts                                     | 53   |
|     | 4.2.2 Available Selectable Output Contacts.                                   |      |
| 5.0 |                                                                               | .55  |
| 5.1 | Safety Precautions                                                            |      |
| 5.2 | Vertiv <sup>™</sup> ·····                                                     | 55   |
| 5.3 | Routine Maintenance                                                           |      |
| 0.0 | 5.31 Record Log                                                               |      |
|     | 5.3.2 Air Filters                                                             |      |
|     | 5.3.3 Limited Life Components.                                                |      |
| 54  | Battery Maintenance                                                           | 58   |
| 0.7 | 541 Battery Safety Precautions                                                | 58   |
| 55  | Detecting Trouble                                                             | 61   |
| 0.0 | 551 Items to check include:                                                   | 01   |
| 56  | Reporting a Problem                                                           | 61   |
| 5.0 | Unstream Fooder Circuit Breaker Setting Inspections                           | 01   |
| 5.7 |                                                                               | 01   |
| 5.8 | AC Output Ground Fault Detection                                              | 62   |
| 6.0 | SPECIFICATIONS                                                                | .63  |
| 6.1 | DC Sources                                                                    | 63   |
|     | 6.1.1 Battery Operation                                                       | 63   |
| 6.2 | Other DC Sources                                                              | 63   |
| 6.3 | Battery DC Ground Fault Detection                                             | 63   |
| 6.4 | Environmental Conditions                                                      | . 64 |
| 6.5 | Thermal Runaway Protection                                                    | . 64 |
|     | ,                                                                             |      |

## **FIGURES**

| Figure 1  | Typical single module UPS system one-line diagram                         | 3    |
|-----------|---------------------------------------------------------------------------|------|
| Figure 2  | Main component locations—225-300kVA Liebert NX                            | 6    |
| Figure 3  | Main component details—225 to 300kVA Liebert NX                           | 7    |
| Figure 4  | Main component details, 400-600kVA Liebert NX                             | 8    |
| Figure 5  | Main display screen, typical                                              | 9    |
| Figure 6  | Normal Mode                                                               | 9    |
| Figure 7  | Utility fail                                                              | .10  |
| Figure 8  | Load on bypass                                                            | .10  |
| Figure 9  | Main display screen, MBD open                                             | . 11 |
| Figure 10 | Load status                                                               | . 12 |
| Figure 11 | Rectifier status                                                          | . 12 |
| Figure 12 | Bypass status                                                             | . 13 |
| Figure 13 | Inverter status                                                           | . 13 |
| Figure 14 | Charger/Booster status                                                    | .14  |
| Figure 15 | Battery status                                                            | .14  |
| Figure 16 | Status summary                                                            | . 15 |
| Figure 17 | Rectifier measures                                                        | .16  |
| Figure 18 | Bypass measures                                                           | .16  |
| Figure 19 | Inverter measures                                                         | . 17 |
| Figure 20 | Charger/Booster measures                                                  | . 17 |
| Figure 21 | Battery measures                                                          | . 18 |
| Figure 22 | Load measures                                                             | . 18 |
| Figure 23 | Battery parameters                                                        | .20  |
| Figure 24 | LIFE menu                                                                 | . 21 |
| Figure 25 | Settings Menus.                                                           | .22  |
| Figure 26 | About menu                                                                | .23  |
| Figure 27 | Load on bypass, UPS not operating                                         | .24  |
| Figure 28 | Load on bypass, UPS available                                             | .25  |
| Figure 29 | Eco Mode one-line mimic display                                           | .25  |
| Figure 30 | Load on UPS, bypass available                                             | .26  |
| Figure 31 | Input power failure, load on DC source                                    | .26  |
| Figure 32 | Load on UPS, DC source not available                                      | .27  |
| Figure 33 | Remote Emergency Power Off                                                | .27  |
| Figure 34 | Maintenance bypass configurations—Two breaker                             | .30  |
| Figure 35 | Maintenance bypass configurations—Three breaker for single-input UPS      | .30  |
| Figure 36 | Maintenance bypass configurations—Three breaker for dual-input UPS        | .30  |
| Figure 37 | Maintenance bypass configurations—Four breaker for dual-input UPS         | . 31 |
| Figure 38 | Maintenance bypass configurations—Four breaker for dual-input UPS, No CB1 | . 31 |
| Figure 39 | Maintenance bypass configurations—Distributed bypass, 1+N multi-module    | .32  |

## TABLES

| Measurements for functional blocks              | 15                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional block information                    |                                                                                                                                                                                                                                                                                                                                                        |
| Current-versus-time curves of overload capacity | 41                                                                                                                                                                                                                                                                                                                                                     |
| UPS status, warning and fault messages          |                                                                                                                                                                                                                                                                                                                                                        |
| Connectivity combinations                       |                                                                                                                                                                                                                                                                                                                                                        |
| UPS component service life                      | 57                                                                                                                                                                                                                                                                                                                                                     |
| Battery voltage, nominal and float              |                                                                                                                                                                                                                                                                                                                                                        |
| Battery retorque values                         |                                                                                                                                                                                                                                                                                                                                                        |
| Environmental specifications                    |                                                                                                                                                                                                                                                                                                                                                        |
| Electrical specifications                       | 65                                                                                                                                                                                                                                                                                                                                                     |
| Physical specifications                         |                                                                                                                                                                                                                                                                                                                                                        |
|                                                 | Measurements for functional blocks<br>Functional block information<br>Current-versus-time curves of overload capacity<br>UPS status, warning and fault messages<br>UPS component service life<br>Battery voltage, nominal and float<br>Battery retorque values<br>Environmental specifications<br>Electrical specifications<br>Physical specifications |



## **IMPORTANT SAFETY INSTRUCTIONS**

## SAVE THESE INSTRUCTIONS

This manual contains important instructions that should be followed during installation of your Liebert NX UPS. Read this manual thoroughly, paying special attention to the sections that apply to your installation, before working with the UPS. Retain this manual for use by installing personnel.



# **WARNING**

Risk of electric shock. Can cause equipment damage, injury or death. This UPS has several circuits that are energized with high DC as well as AC voltages. Check for voltage with both AC and DC voltmeters before working within the UPS. Check for voltage with both AC and DC voltmeters before making contact.

Only properly trained and qualified personnel wearing appropriate safety headgear, gloves, shoes and glasses should be involved in installing the UPS or preparing the UPS for installation. When performing maintenance with any part of the equipment under power, service personnel and test equipment should be standing on rubber mats.

In case of fire involving electrical equipment, use only carbon dioxide fire extinguishers or those approved for use in fighting electrical fires.

Extreme caution is required when performing installation and maintenance. Special safety precautions are required for procedures involving handling, operation and maintenance of the UPS system. Observe all safety precautions in the installation manual, SL-25535, and in this manual before as well as during performance of all maintenance procedures. Observe all DC safety precautions before working on or near the DC system.

# **WARNING**

Risk of heavy unit falling over. Improper handling can cause equipment damage, injury or death.

Exercise extreme care when handling UPS cabinets to avoid equipment damage or injury to personnel. The UPS module weight is up to 4450lb. (2019kg).

Locate center of gravity symbols \_\_\_\_\_ and determine unit weight before handling each cabinet. Test lift and balance the cabinets before transporting. Maintain minimum tilt from vertical at all times.

Slots at the base of the module cabinets are intended for forklift use. Base slots will support the unit only if the forks are completely beneath the unit.

Read all of the following instructions before attempting to move, lift, or remove packaging from unit, or prepare unit for installation



# **WARNING**

Risk of electric shock and fire. Can cause equipment damage, personal injury or death.

Under typical operation and with all UPS doors closed, only normal safety precautions are necessary. The area around the UPS system should be kept free of puddles of water, excess moisture and debris.

Only test equipment designed for troubleshooting should be used. This is particularly true for oscilloscopes. Always check with an AC and DC voltmeter to ensure safety before making contact or using tools. Even when the power is turned Off, dangerously high potential electric charges may exist at the capacitor banks and at the DC connections.

All wiring must be installed by a properly trained and gualified electrician. All power and control wiring must comply with all applicable national, state and local codes.

One person should never work alone, even if all power is disconnected from the equipment. A second person should be standing by to assist and to summon help in case of an accident.

#### **Battery Cabinet Precautions**

The following warning applies to all battery cabinets supplied with UPS systems. Additional warnings and cautions applicable to battery cabinets may be found in **Important Safety** Instructions on page 1 and 5.4 - Battery Maintenance.



## **A** WARNING

Risk of electric shock, fire and smoke. Can cause equipment damage, injury and death. Internal battery strapping must be verified by manufacturer prior to moving a battery cabinet after initial installation.

- Battery cabinets contain non-spillable batteries.
- Keep units upright.
- Do not stack.
- Do not tilt.

Call 1-800-543-2378 before moving battery cabinets after initial installation. For systems using DC sources other than batteries, refer to the manufacturer's recommendations for handling and care.

## NOTE

Materials sold hereunder cannot be used in the patient vicinity (e.g., use where UL, cUL or IEC 60601-1 is required). Medical applications such as invasive procedures and electrical life support equipment are subject to additional terms and conditions.

### NOTICE

This unit complies with the limits for a Class A digital device, pursuant to Part 15 Subpart J of the FCC rules. These limits provide reasonable protection against harmful interference in a commercial environment. This unit generates, uses and radiates radio frequency energy and, if not installed and used in accordance with this instruction manual, may cause harmful interference to radio communications. Operation of this unit in a residential area may cause harmful interference that the user must correct at his own expense.



## **1.0 INTRODUCTION**

## 1.1 GENERAL DESCRIPTION

The Liebert NX UPS is a maximum-efficiency UPS that provides continuous, high-quality AC power to business-critical equipment, such as telecommunications and data processing equipment. The Liebert NX UPS supplies power that is free of the disturbances and variations in voltage and frequency common to utility power, which is subject to brownouts, blackouts, surges and sags.

The Liebert NX utilizes the latest in high-frequency, double-conversion pulse-width modulation, transformer-free technology and fully digital controls to enhance its reliability and efficiency and increase the ease of use.

As shown in **Figure 1**, the AC utility source is input to the rectifier which converts the AC utility into DC power at the DC bus operating voltage. This feeds the inverter and the DC/DC booster/charger. The inverter converts that DC power from the rectifier—or DC power from the DC source (via the booster/charger)—into AC power for the load.

The DC source will power the load through the inverter in the event of a power failure. When the system is being powered by the utility, the booster/charger converts a portion of the DC power from the rectifier to a voltage suitable for charging the batteries or other DC source. When the load is being powered by the DC source, the booster/charger converts the DC source output to the voltage needed to drive the inverter.

The utility source can also power the load through the static bypass.

If maintenance or repair of the UPS is necessary, the load can be switched without interruption in service to an external maintenance bypass.

## 🔾 ΝΟΤΕ

Vertiv recommends that the Liebert NX 225-600kVA always be installed with a maintenance bypass system that fully isolates the UPS from the load and the AC power source. This allows service personnel to safely repair the UPS if needed while maintaining power to the critical load.

## 



#### Figure 1 Typical single module UPS system one-line diagram

- 1. UPS rectifier bypass input and output cables must be run in separate conduits.
- 2. All power cables from DC supply should be sized for a total maximum of 2V drop at maximum discharge current.
- 3. Control wiring and power wiring must be run in separate conduits.
- 4. Vertiv recommends installing grounding conductors.



## 1.2 MODES OF OPERATION

## 1.2.1 Normal Mode

Operating in normal mode, the Liebert NX's rectifier derives power from a utility AC source and supplies regulated DC power to the inverter, which regenerates precise AC power to supply the connected equipment. The rectifier also uses the utility source power to charge the DC sources.

## 1.2.2 Eco Mode

When the Liebert NX 225-600 kVA is in Eco Mode, the load will be supported by the bypass source as long as the power quality of the bypass source remains within specified limits. This reduces energy consumption and boosts efficiency to greater than 98%. If the power quality of the bypass source deviates from acceptable levels, the inverter will take the load and the UPS will operate in normal mode. It will remain in normal mode until the power quality of the bypass source has remained within limits for a suitable time, at which point the Liebert NX will return to Eco Mode.

Eco Mode may be inhibited either automatically, such as when the Liebert NX is being fed by a generator source, or manually, by sending a signal to one of the programmable input contacts. Examples of control circuits to provide this functionality and a more detailed explanation of Eco Mode operation can be found in **2.6 - Eco Mode Active**.

## 1.2.3 Bypass Mode

When the Liebert NX is in bypass mode, the load is directly supported by utility power and is without DC source backup protection.

The Liebert NX's inverter and bypass static switch will shift the load from the inverter to bypass mode without an interruption in AC power if the inverter is synchronous with the bypass and any of the following occurs:

- Inverter fails
- Inverter overload capacity is exceeded
- Inverter is manually turned Off by the user
- UPS is operating on battery and battery voltage reaches end of discharge level



## ΝΟΤΕ

If the inverter is not in sync with the bypass, the static switch will transfer the load from the inverter to the bypass WITH interruption in AC power to the critical load. The default interruption time is 16ms; the minimum is 4ms. Vertiv<sup>™</sup> can adjust the length of the interruption.

### 1.2.4 Battery Mode

When utility AC power fails, the Liebert NX protects the critical load by instantaneously channeling DC source power to the inverter, which continues supporting the critical load without interruption.

When utility power returns and is within acceptable limits, the Liebert NX automatically shifts back to Normal mode, with the rectifier powering the critical load.

### 1.2.5 Maintenance Bypass

The installation of a Maintenance Bypass Cabinet or Assembly is recommended to allow you to totally isolate the UPS from all power sources. Use of the Maintenance Bypass is described in **2.0 - Operation**.



## 1.3 OPTIONS

A number of options are available from Vertiv for your UPS system. Some options are not available for all ratings. Described below are the most frequently provided options. Other options are available. Contact your Vertiv sales representative for more information.

- LIFE Services<sup>™</sup>—A remote service delivery capability which enables the UPS to alert a special Vertiv Support Center to provide more efficient and proactive identification, resolution, and prevention of potential UPS issues.
- Network and BMS Connectivity and Monitoring—Communication cards support SNMP, Modbus or both (Dual Protocol)
- **Battery and Racks**—The batteries provide power in the event of a power outage. The Liebert NX UPS can use a variety of battery types, provided the battery plant is designed for the UPS DC voltage range and the load requirements of your application.
- **Battery Cabinets**—Valve-regulated, lead-acid (VRLA) sealed batteries are available in matching cabinets for convenient installation and maintenance in otherwise unprotected space. Depending on the UPS module rating, two or more cabinets may be connected in parallel to provide the additional run time.
- **Module Battery Disconnect**—The UPS system utilizes a separate Module Battery Disconnect for remotely located batteries. A sensing circuit in the UPS module, set at the battery low voltage limit, trips the Module Battery Disconnect to safeguard the battery from excessive discharge. The Module Battery Disconnect has an undervoltage release mechanism designed to ensure that during any shutdown or failure mode all battery potential is removed from the UPS system.
- Battery DC Ground Fault Detection—Monitors battery ground fault current and generates a warning on the UPS touchscreen LCD and other customer-specific annunciation options.
- Maintenance Bypass—This switchboard provides make-before-break maintenance bypass. It includes: Maintenance Bypass Breaker (MBB) and Maintenance Isolation Breaker (MIB).
- Load Bus Synchronization—The Load Bus Sync (LBS) option keeps independent UPS systems (and therefore their critical load buses) in sync, even when the modules are operating on DC source or asynchronous AC sources. This means that critical loads connected to both load buses can switch seamlessly between the two.
- MultiBus Synch Module (MBSM)—Permits synchronizing operation of up to 11 UPS modules.
- Input Circuit Breaker—The UPS may be equipped with an internal input circuit breaker (CB1).
- **Remote Status Panel**—This option provides key status indicators. If ordered with your UPS, the power supply for this option is factory installed. To add this option to a unit which has already been shipped contact Liebert Service.
- **EPO** (Emergency Power Off)—Your UPS may be equipped with an EPO button on its front panel near the operator touch screen. Contacts for a remote EPO to be installed on site are also provided standard on all units.
- **Temperature-Compensated Charging**—When the battery temperature exceeds a preset limit (typically 77°F [25°C]), this optional circuit proportionally reduces float charging voltage to prevent overcharging the battery.
- **Battery Load Testing**—When activated, this option forces the battery string to assume the load for a short period of time.



# **2.0 OPERATION**

The Liebert NX UPS is equipped with a microprocessor-based display touchscreen designed for convenient and reliable operation. The display is driven by menu-prompted software.

## 2.1 PHYSICAL LAYOUT OF THE UPS

#### Figure 2 Main component locations—225-300kVA Liebert NX



## VERTIV





Doors and Inner Skins Removed

Rev. 2





Figure 4 Main component details, 400-600kVA Liebert NX

## 2.2 INTERFACE DISPLAY FEATURES

The Liebert NX interface display enables the operator to perform such tasks as:

- Check operational status
- Monitor the power flow through the UPS system and all meter readings
- Execute operational procedures
- Check status reports and event files
- Adjustment programmable parameters

The touchscreen display has a blue background and multicolored text. The display turns On automatically, but dims and the back-light goes out after 15 minutes of inactivity. Touching the screen will reactivate the back-light for 15 minutes. If any screen other than the mimic screen is

accessed, that screen will be displayed for 5 minutes without any interaction. If there is no activity for 5 minutes, the display will revert to the basic mimic screen.



#### Figure 5 Main display screen, typical

COLOR CODE FOR ICONS AND POWER PATH LINES Green = OK and In the Active Power Path Gray = Not Active Yellow = Advisory Red = Faulted or Disabled

#### Figure 6 Normal Mode













## 2.3 TOUCHSCREEN NAVIGATION

Several menu items can be accessed from the main display screen (see **Figure 17**). These menu items are detailed in subsequent sections.

#### 2.3.1 Main Display Screen

This is the default screen. It displays the following information:

- Bypass Input Voltage
- Bypass Input Frequency
- Input Voltage
- Input Current
- Input Frequency
- Output Voltage
- Output Current
- Output Frequency
- DC Source VoltageDC Source Current

## System Status

Only one of the following three status indicators is actively highlighted at any given time:

**System Normal Indicator**—When the green check mark status icon (?) is highlighted, the system is operating normally and no warning or alarm has occurred. During line power failures (with all other conditions being nominal), this icon is not highlighted.



**Warning Indicator**—The yellow triangle icon is activated and highlighted by abnormal conditions that could affect the normal operation of the UPS. These conditions do not originate with the UPS, but may be caused either by the surrounding environment or by the electrical installation (line power side and load side). A description of the active warning(s) can be viewed by touching the yellow triangle or using the Status button at the bottom of the page.

**Fault Indicator**—When the red circle with white cross is highlighted, immediate attention should be given to the severity of the alarm, and service should be called promptly. A description of the active alarm(s) can be viewed by touching the Status button at the bottom of the page.

No matter which indicator is active, all available diagnostic information on the unit can be displayed by touching this area.

**Control Buttons**: Start Inverter and Stop Inverter—The touchscreen display features two buttons for starting and shutting down the inverter. The start/stop control incorporates a safety feature for preventing accidental operation. When the start or stop function for the inverter is selected, a pop-up window appears asking for confirmation of the action.

Reset Fault—Reset faults (becomes red when there is a system fault).

Alarm Silence—Silence the buzzer in the case of an alarm.

| Q | NOTE |
|---|------|
|   |      |

If screen is inactive for 30 seconds, the LCD will revert to the system status screen.

#### 2.3.2 Status

This menu item displays a Status summary of warnings, faults and other events, as well as status screens for each functional block, such as Rectifier, Inverter and Load.



#### Figure 9 Main display screen, MBD open

In this case, the UPS is operating in double-conversion mode without power backup. All power paths (except the internal bypass and maintenance bypasses lines) are green (active). The bypass static switch and the bypass lines are gray,



### Figure 10 Load status

| Load                      |              |          |          |                | HOME        |
|---------------------------|--------------|----------|----------|----------------|-------------|
| Measurement               |              |          |          |                |             |
| Load percentage per phase | A            | 0 %      |          | <b>—</b> — — — |             |
|                           | В            | 0 %      |          | BFB            | Gray        |
|                           | С            | 0 %      |          | Green          | Green       |
| Voltage                   | A-B          | 480.0 V  |          | CB1 🔨          | MOB         |
|                           | B-C          | 480.0 V  |          |                |             |
|                           | C-A          | 480.0 V  |          | I              | Green Green |
| Current                   | A            | 0.0 A    |          | UPS Module     |             |
|                           | В            | 0.0 A    |          |                | MBD         |
|                           | С            | 0.0 A    | ×        |                | 🕗 Green     |
| ld Name                   |              | Des      | cription |                |             |
| 07-000 🜖 Load Supplied    | by Inverter  |          |          |                |             |
| 07-004 D Load on Low P    | riority Line |          |          |                |             |
|                           | -            |          |          |                |             |
|                           |              |          |          |                |             |
|                           |              |          |          |                |             |
|                           |              |          |          |                |             |
|                           |              |          |          |                |             |
| Status                    | Events log   | Measures | Battery  | LIFE           | Settings    |

### Figure 11 Rectifier status

| Recti                      | fier       |          |             |          |          | номе     |       |
|----------------------------|------------|----------|-------------|----------|----------|----------|-------|
| Measurement                |            |          |             |          |          |          |       |
| Rectifier input voltage    | A-B        | 479.5 V  |             | F        |          |          |       |
|                            | B-C        | 479.5 V  |             | BFB      | 🔨 🗸 Gray |          |       |
|                            | C-A        | 479.5 V  |             |          | $\sim$   |          |       |
| Rectifier input current    | A          | 0.0 A    |             | CB1      |          | MOB      |       |
|                            | В          | 0.0 A    |             |          |          | $\sim$   |       |
|                            | С          | 0.0 A    |             | Gre      | een Gre  | en       | Green |
| Rectifier input frequency  |            | 59.3 Hz  |             | UPS Modu | le Gree  | <u> </u> |       |
| Input apparent power       | A          | 0.0 KVA  |             |          | MBD      |          |       |
|                            | В          | 0.0 KVA  | $\sim$      |          | Gree     | en       |       |
| ld Name                    |            |          | Description |          |          |          |       |
| 02-002 <1) Rectifier is of | n          |          |             |          |          |          |       |
| 02-013 ④ Precharge Fi      | nished     |          |             |          |          |          |       |
|                            |            |          |             |          |          |          |       |
|                            |            |          |             |          |          |          |       |
|                            |            |          |             |          |          |          |       |
|                            |            |          |             |          |          |          |       |
|                            |            |          |             |          |          |          |       |
| Status                     | Events log | Measures | Batter      | y I      |          | Setting  | 5     |

### Figure 12 Bypass status

| Вура                   | ss         |         |            |         |            |             | HOME     |       |
|------------------------|------------|---------|------------|---------|------------|-------------|----------|-------|
| Measurement            |            |         |            |         |            |             |          | -     |
| Bypass input voltage   | A-B        | 480.0 V |            |         |            |             |          |       |
|                        | B-C        | 480.0 V |            |         | BFB        | ∿ Gr        | ray      |       |
|                        | C-A        | 480.0 V |            |         |            | $\sim$      |          |       |
| Bypass input frequency |            | 59.7 Hz |            |         | UPS Module | en Gr<br>Gr | een      | Green |
| ld Name                |            |         | Descriptio | n       |            |             |          |       |
| 01-002 ④ Bypass is O   | ff         |         |            |         |            |             |          |       |
| Status                 | Events log | Measure | s C        | Battery |            | FE          | Settings |       |

#### Figure 13 Inverter status

| Invert                                   | er              |               |             |        | номе    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|-----------------|---------------|-------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement                              |                 |               |             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module 1 temp. sensor 1                  | A               | 20 °C   68 °F |             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | В               | 20 °C   68 °F |             | BFB    | Gray    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | С               | 20 °C   68 °F |             |        | $\sim$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module 1 temp. sensor 2                  | А               | 20 °C   68 °F |             | CB1 🔨  | - IM    | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                          | В               | 20 °C   68 °F |             |        |         | Section and the section of the secti |
|                                          | С               | 20 °C   68 °F |             | Gree   | Green   | Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |                 |               |             | L      | Green   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ld Name                                  |                 |               | Description |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 06-005 <ol> <li>Source of Syn</li> </ol> | hchronization i | is the Bypass |             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 06-018 <ol> <li>Operation Do</li> </ol>  | ouble convers   | ion - VFI     |             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 06-002 ④ Inverter is on                  |                 |               |             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Status                                   | Events l        | og Measure    | s Batt      | ery Li | FE Sett | tings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### Figure 14 Charger/Booster status



#### Figure 15 Battery status

| Battery                                    |                            | НОМЕ                                              |
|--------------------------------------------|----------------------------|---------------------------------------------------|
| Measurement                                |                            |                                                   |
| Battery voltage                            | 540 V                      |                                                   |
| Battery current                            | 2.1A                       | BFB Gray                                          |
| Temp. sensor 1                             | 20 °C   68 °F              | $\sim$                                            |
| Backup time                                | 19 m                       | CB1 🔨 — MOB                                       |
| Capacity                                   | 80 %                       |                                                   |
| ld Name                                    | Description                | Red                                               |
| 34-009 😵 Battery Switch Open               | Connect the battery        |                                                   |
| 34-005 🔞 There is no Battery Cor           | nected Connect the Battery |                                                   |
| 34-011 😢 Resttime exceeded                 | The calculated battery r   | resttime is now under the low battery signal time |
| 24-039 🥼 Battery #1 is Open                |                            |                                                   |
| 04-000 <ol> <li>Battery Warning</li> </ol> |                            |                                                   |
| Status                                     | s log Measures Battery     | LIFE Settings                                     |

VERT<u>IV.</u>

## 2.3.3 Events Log Menu

This menu item displays recent Events that occurred while the UPS was in operation.

#### Figure 16 Status summary

| EVENTS L                     | DG        |          |                                             | HOME     |
|------------------------------|-----------|----------|---------------------------------------------|----------|
| Timestamp                    | Category  | ld       | Event                                       |          |
| 4 Mar/15/2015 - 21:26:48.860 | General   | 00-009   | Inverter on Rectifier                       |          |
| Mar/15/2015 - 21:26:48.842   | General   | 00-004   | ECO mode enabled                            |          |
| Mar/15/2015 - 21:26:44.739   | General   | 00-009   | Inverter on Rectifier                       |          |
| 🗘 Mar/15/2015 - 21:26:44.721 | General   | 00-004   | ECO mode enabled                            |          |
| Mar/15/2015 - 21:26:15.640   | Inverter  | 06-018   | Operation Double conversion - VFI           |          |
| 🜒 Mar/15/2015 - 21:26:15.605 | Bypass    | 01-008   | Bypass Available with Delay                 |          |
| 🕖 Mar/15/2015 - 21:26:15.565 | Inverter  | 06-005   | Source of Synchronization is the Bypass     |          |
| 🕽 Mar/15/2015 - 21:26:15.497 | Bypass    | 01-006   | Bypass Mains is out of Tolerance            |          |
| Mar/15/2015 - 21:26:04.318   | Inverter  | 06-007   | Source of Synchronization is the Self Clock |          |
| Mar/15/2015 - 21:26:04.268   | Bypass    | 01-008   | Bypass Available with Delay                 |          |
| 🕖 Mar/15/2015 - 21:26:03.810 | Bypass    | 01-006   | Bypass Mains is out of Tolerance            |          |
| Mar/15/2015 - 21:21:30.967   | General   | 00-009   | Inverter on Rectifier                       |          |
| Mar/15/2015 - 21:21:30.948   | General   | 00-004   | ECO mode enabled                            |          |
| Mar/15/2015 - 21:21:25.540   | General   | 00-009   | Inverter on Rectifier                       |          |
| 🕽 Mar/15/2015 - 21:21:25.521 | General   | 00-004   | ECO mode enabled                            |          |
| ) Mar/15/2015 - 21:21:20.249 | Inverter  | 06-018   | Operation Double conversion - VFI           |          |
| 🗘 Mar/15/2015 - 21:21:20.213 | Bypass    | 01-008   | Bypass Available with Delay                 | ×        |
| Status                       | s log 🛛 🛛 | leasures | Battery LIFE                                | Settings |

#### 2.3.4 Measures Menu

This menu item displays the full set of measurements for each functional block (rectifier, bypass, booster/charger, batteries, inverter and load).

 Table 1
 Measurements for functional blocks

| Rectifier                                             | Bypass        | Inverter     | Charger/Booster                   | Battery         | Load                       |
|-------------------------------------------------------|---------------|--------------|-----------------------------------|-----------------|----------------------------|
| Voltage - L-L                                         | Voltage - L-L | Temperatures | Booster<br>Output Voltage         | Battery Voltage | % per phase                |
| Current - Phase                                       | Frequency     | —            | Booster Output<br>Voltage Setting | Battery Current | Voltage L-L                |
| Frequency                                             | _             | _            | Charger Current<br>Limit          | Temperatures    | Current per Phase          |
| kVA per Phase                                         | —             | —            | Battery Voltage                   | Backup Time     | kW per Phase               |
| Temperatures                                          | —             | —            | Battery Current                   | Capacity        | kVA per Phase              |
| Rectifier<br>Output Voltage                           | _             | _            | Temperatures                      | _               | Frequency                  |
| Input Supervision<br>Counter<br>(# of Mains failures) | _             | _            | _                                 | _               | Overload Time<br>Remaining |
| —                                                     | —             | —            | —                                 | —               | Load%                      |
| _                                                     | _             | _            | _                                 | _               | Total Load Power<br>(kW)   |



| Rectifier | Bypass | Inverter | Charger/Booster | Battery | Load                      |
|-----------|--------|----------|-----------------|---------|---------------------------|
| _         | _      | _        | _               | —       | Total Load Power<br>(kVA) |
| _         | _      | _        | _               | _       | Ambient<br>Temperature    |

#### Table 1 Measurements for functional blocks

#### Figure 17 Rectifier measures

| MEA                       | SURES    |          |               |         | но    | ME       |
|---------------------------|----------|----------|---------------|---------|-------|----------|
| Rectifier                 | Bypass   | Inverter | Chg / Boost   | Battery | Load  |          |
| Rectifier input voltage   |          | A-B      | 479.5 V       |         |       |          |
|                           |          | B-C      | 479.5 V       |         |       |          |
|                           |          | C-A      | 479.5 V       |         |       |          |
| Rectifier input current   |          | А        | 0.0 A         |         |       |          |
|                           |          | В        | 0.0 A         |         |       |          |
|                           |          | С        | 0.0 A         |         |       |          |
| Rectifier input frequency |          |          | 59.1 Hz       |         |       |          |
| Input apparent power      |          | A        | 0.0 kVA       |         |       |          |
|                           |          | В        | 0.0 kVA       |         |       |          |
|                           |          | С        | 0.0 KVA       |         |       |          |
| Module 1 temp. sensor 1   |          | A        | 20 °C   68 °F |         |       |          |
|                           |          | В        | 20 °C   68 °F |         |       |          |
|                           |          | С        | 20 °C   68 °F |         |       |          |
| Module 1 temp. sensor 2   |          | А        | 20 °C   68 °F |         |       |          |
|                           |          | В        | 20 °C   68 °F |         |       |          |
|                           |          | С        | 20 °C   68 °F |         |       | ~        |
| Destifier output voltage  |          |          | 700.01/       |         |       |          |
| Status                    | Events I | og Measu | ures Batte    | ery L   | IFE S | Settings |

#### Figure 18 Bypass measures

| М                   | EASURES  |          |             |         |      | номе     |
|---------------------|----------|----------|-------------|---------|------|----------|
| Rectifier           | Bypass   | Inverter | Chg / Boost | Battery | Load |          |
| Bypass input voltag | e        | A-B      | 480.0 V     |         |      |          |
|                     |          | B-C      | 480.0 V     |         |      |          |
|                     |          | C-A      | 480.0 V     |         |      |          |
| Bypass input freque | ency     |          | 59.3 Hz     |         |      |          |
|                     |          |          |             |         |      |          |
| Status              | Events I | og Measu | ares Batte  | ery     | LIFE | Settings |

### Figure 19 Inverter measures

| М                  | EASURES   |          |               |         | ŀ    | IOME     |
|--------------------|-----------|----------|---------------|---------|------|----------|
| Rectifier          | Bypass    | Inverter | Chg / Boost   | Battery | Load |          |
| Module 1 temp. sen | sor 1     | A        | 20 °C   68 °F |         |      |          |
|                    |           | В        | 20 °C   68 °F |         |      |          |
|                    |           | С        | 20 °C   68 °F |         |      |          |
| Module 1 temp. sen | sor 2     | А        | 20 °C   68 °F |         |      |          |
|                    |           | В        | 20 °C   68 °F |         |      |          |
|                    |           | С        | 20 °C   68 °F |         |      |          |
|                    |           |          |               |         |      |          |
| Status             | Events lo | g Measur | es Batte      | ery L   | IFE  | Settings |



#### Figure 20 Charger/Booster measures

| MEASURES HOME        |            |          |                 |         | HOME |          |
|----------------------|------------|----------|-----------------|---------|------|----------|
| Rectifier            | Bypass     | Inverter | Chg / Boost     | Battery | Load |          |
| Booster output volta | age        |          | 780.0 V         |         |      |          |
| Charger output set   | voltage    |          | 551.9 V         |         |      |          |
| Charger current lim  | itation    |          | 50.0 A          |         |      |          |
| Battery voltage      |            |          | 540 V           |         |      |          |
| Battery current      |            |          | 2.2 A           |         |      |          |
| Module 1/2 temp. s   | ensor 1    |          | 20 °C   68 °F   |         |      |          |
| Module 1/2 temp. s   | ensor 2    |          | 32 °C   89.6 °F |         |      |          |
|                      |            |          |                 |         |      |          |
| Status               | Events log | Measu    | res Batte       | ery L   | IFE  | Settings |

## Figure 21 Battery measures

| МІ              | EASURES    |          |               |         |      | номе     |
|-----------------|------------|----------|---------------|---------|------|----------|
| Rectifier       | Bypass     | Inverter | Chg / Boost   | Battery | Load |          |
| Battery voltage |            |          | 540 V         |         |      |          |
| Battery current |            |          | 2.2 A         |         |      |          |
| Temp. sensor 1  |            |          | 20 °C   68 °F |         |      |          |
| Backup time     |            |          | 19 m          |         |      |          |
| Capacity        |            |          | 80 %          |         |      |          |
|                 |            |          |               |         |      |          |
| Status          | Events log | Measu    | res Batt      | ery     | LIFE | Settings |

#### Figure 22 Load measures

| MEASURES             |           |          |             |         | H    | IOME     |
|----------------------|-----------|----------|-------------|---------|------|----------|
| Rectifier            | Bypass    | Inverter | Chg / Boost | Battery | Load |          |
| Load percentage per  | phase     | A        | 0 %         |         |      |          |
|                      |           | В        | 0 %         |         |      |          |
|                      |           | С        | 0 %         |         |      |          |
| Voltage              |           | A-B      | 480.0 V     |         |      |          |
|                      |           | B-C      | 480.0 V     |         |      |          |
|                      |           | C-A      | 480.0 V     |         |      |          |
| Current              |           | A        | 0.0 A       |         |      |          |
|                      |           | В        | 0.0 A       |         |      |          |
|                      |           | С        | 0.0 A       |         |      |          |
| Real power           |           | A        | 0.0 KW      |         |      |          |
|                      |           | В        | 0.0 KW      |         |      |          |
|                      |           | С        | 0.0 KW      |         |      |          |
| Apparent power       |           | A        | 0.0 KVA     |         |      |          |
|                      |           | В        | 0.0 KVA     |         |      |          |
|                      |           | С        | 0.0 KVA     |         |      |          |
| Frequency            |           |          | 58.9 Hz     |         |      |          |
| Overland time remain | aina      |          | 50000 0     |         |      |          |
| Status               | Events le | og Measu | ures Batte  | ery L   | IFE  | Settings |

VERTIV

### 2.3.5 Battery Menu

This menu displays battery status/parameters, such as temperature, cell voltage, capacity and run time, as well as commands that enable the user to configure and execute a battery test.

#### **Battery Status**

- Battery Status— Verify whether battery is charging
- Charger Status—Verify Battery Charger status
- Battery Test Status—Verify details of the last battery test executed
- Automatic Battery Test Status—Verify details related to automatic battery test

## **Battery Test**

The following commands can be set using this page:

- Enable automatic battery test—Using this command, the Automatic Battery test is enabled using the existing parameter configuration.
- Configure and manage Manual Battery test. Features are:
  - Test duration and Min Voltage can be modified using the + and buttons
  - Start battery test using dedicated command button (Start Battery Test)
  - Test duration can be monitored on a dedicated progress bar (Battery test progress bar)
  - The battery test can be aborted while it is running with the Stop Battery test button
  - Battery test status provides immediate information about test status

### **Battery Equalize Charging**



## **WARNING**

Risk of electric shock, explosive reaction, hazardous chemicals and fire. Can cause equipment damage, personal injury and death.

Battery equalize charging should be performed only by specially trained personnel or Vertiv Vertiv personnel. Contact Vertiv before enabling equalize charging with valveregulated, lead-acid batteries, such as those used in Liebert battery cabinets. Refer to the battery manufacturer's manual, available on the manufacturer's Web site, for specific information about equalize charging

Because individual battery characteristics are not identical and may change over time, the UPS module is equipped with circuitry to equalize battery cell voltages. This circuit temporarily increases charging voltage to maintain flooded type battery cells at full capacity.





#### **Battery Measures**

This section monitors variables applicable to the battery.

#### Figure 23 Battery parameters





#### 2.3.6 LIFE<sup>™</sup> Menu

This menu displays the information about the Liebert LIFE Services connections, status of calls and types of calls and allows certain specific commands to be executed. This button will not active be if the LIFE Services option is not available on the UPS.

#### Figure 24 LIFE menu

| 🐑 L                                                                   | IFE.net                                                                   |                    | НОМЕ                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIFE.net option<br>LIFE.net<br>Operating mode<br>Current UPS date/tir | LIFE.net status<br>Present<br>Disabled<br>Service<br>ne 15.03.15 21:36:55 | Set Sampling Mode  | Ups connection status<br>Not Connected<br>Waiting for connection<br>Connected<br>LIFE.net data sending in progress - stage 1<br>LIFE.net data sending in progress - stage 2<br>Ups Online Session in progress<br>Closing connection<br>Call delayed |
| Next scheduled call<br>Emergency calls<br>Delayed call in             | Ups calls status<br>15.03.15 20:20:00<br>Enabled<br>0 seconds             | Reset delayed call | Call Type<br>Routine Call<br>Emergency call<br>Manual Call<br>Buffer full call                                                                                                                                                                      |

| 1. LIFE.net stat                                  | 1. LIFE.net status          |                                                                                                                              |  |  |  |
|---------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| LIFE.net option                                   | (Present/Not<br>present)    | Shows whether the "LIFE.net option is available on the UPS.                                                                  |  |  |  |
| LIFE.net                                          | (Enabled/Disabled)          | Shows whether the "LIFE.net option has been started.                                                                         |  |  |  |
| Current UPS date/time                             | dd.mm.yy hh:mm:ss           | Displays the time used by the UPS to time-<br>stamp the Life data                                                            |  |  |  |
| <ul> <li>'Set Sampling<br/>Mode button</li> </ul> | Set samling/service<br>mode | Toggles LIFE.net operating modes between<br>'service' and sampling': service is used when<br>UPS maintenance is in progress. |  |  |  |

| 2. UPS calls status                                 |                    |                                                                                                                          |  |  |
|-----------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Next scheduled<br/>call</li> </ul>         | dd.mm.yy hh:mm:ss  | Displays the time of next regular UPS call.                                                                              |  |  |
| Emergency calls                                     | (Enabled/Disabled) | Shows whether UPS emergency calls are<br>enabled or have been inhibited by the<br>Life Station for a particular reason.  |  |  |
| Delayed call in                                     | dd.mm.yy hh:mm:ss  | Displays the seconds countdown after<br>which the UPS will repeat a previously<br>unsuccessful Life communication.       |  |  |
| <ul> <li>'Reset delayed<br/>call' button</li> </ul> | Reset delayed call | When this button is pressed, the delayed call countdown is forced to zero, so that the UPS repeats the call immediately. |  |  |

| 3. UPS connection status                                          |                                                                                                                          |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Not connected                                                     | The UPS is not connected to the LIFE Station.                                                                            |  |  |  |
| Waiting for connection                                            | The UPS has requested connection to the Life Station and is waiting for connection to be established.                    |  |  |  |
| Connected                                                         | The UPS is connected to the LIFE Station.                                                                                |  |  |  |
| <ul> <li>LIFE.net data sending in<br/>progress-stage 1</li> </ul> | The UPS is transmitting its diagnostics history to the LIFE station.                                                     |  |  |  |
| <ul> <li>LIFE.net data sending in<br/>progress-stage 2</li> </ul> | The UPS is exchanging other service data with the LIFE station.                                                          |  |  |  |
| <ul> <li>UPS online session in<br/>progress</li> </ul>            | The UPS has entered the online session requested by the LIFE Station Administrator, so it can be monitored in real time. |  |  |  |
| Closing connection                                                | The UPS is closing the connection.                                                                                       |  |  |  |
| Call delayed                                                      | The UPS has scheduled a new call because the previous call failed                                                        |  |  |  |

| 4. Call type                                         |                                                                                                                       |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Routine call                                         | The UPS is making its regular call.                                                                                   |
| Emergency call                                       | The UPS is making an Emergency call.                                                                                  |
| Manual call                                          | The UPS is making a Manual Call or an automatic extra call to reset an emergency condition which is no longer active. |
| Buffer full call                                     | The UPS is making a call to empty its diagnostics history buffer, which is full and cannot store any more data.       |
| <ul> <li>'Manual call<br/>request' button</li> </ul> | When this button is pressed, the UPS is forced manually to make an immediate call to the LIFE station.                |

VERTIV

#### 2.3.7 Settings Menu

This menu item permits changing the LCD settings, selecting the language on the display, setting the date and time format, choosing the time zone, enabling and disabling Eco Mode and changing passcodes.

#### Figure 25 Settings Menus

#### LCD Settings Language Settings SETTINGS SETTINGS HOME HOME LCD Setup Time zone Languages Date/Time Time zone English Apply • + Brightness 80% 4 Screen Saver After 06:30 min Vever Status Events log Measures Status Events log Measures Battery Settings

#### **Date and Time Settings**



#### **Time Zone Settings**





HOME

ECO MODE



## 2.4 ANIMATED ONE-LINE MIMIC

This displays all the functional blocks in the UPS. Touching an icon displays detailed information about the functional block. The blocks color signifies its status:

- Green: Normal
- Yellow: Warning
- Red: Fault
- Gray: Not active but no active fault

Pressing a block, such as Rectifier or Inverter, displays a page with details about the block.

#### 2.4.1 Functional Blocks

This section provides details about the status of each functional block of the UPS. Touching a block displays a page with status messages and measurements as shown in **Table 2**.

#### Table 2 Functional block information

| Functional<br>Block | Measurements Displayed                                                                                                                                                                                         |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rectifier           | Input Voltage L-L, Input Current phases A-B-C, Input Frequency, Input Apparent Power phases A-B-C,<br>Temperature Sensor(s), Output Voltage, Input Supervision Counter                                         |  |
| Bypass              | Input Voltage L-L, Input Frequency, Temperature Sensor(s)                                                                                                                                                      |  |
| Inverter            | Temperature Sensor(s) phases A-B-C                                                                                                                                                                             |  |
| Booster/Charg<br>er | Booster Output Voltage, Charger Output Set Voltage, Charger Current Limitation, Battery Voltage,<br>Battery Current, Temperature Sensor(s)                                                                     |  |
| Battery             | Voltage, Current, Temperature Sensor(s), Backup Time, Capacity (%)                                                                                                                                             |  |
| Load                | % Load phases A-B-C, Voltage L-L, Current phases A-B-C, Real Power per Phase (kW), Apparent Power per Phase (kVA), Frequency, Overload Time Remaining, Load %, Total Load Real & Apparent, Ambient Temperature |  |

#### 2.4.2 About Menu

This button displays the type and size of the unit. Touching this area reveals the serial number, firmware details and the IP and MAC addresses.



#### Figure 26 About menu

| 🕈 ABOU               | Т                                                                 | HOME     |  |  |  |
|----------------------|-------------------------------------------------------------------|----------|--|--|--|
| Serial Number        | NET 5 400-600kVA Lab UPS 2                                        |          |  |  |  |
| Model                | Liebert NX                                                        |          |  |  |  |
| Power class          | 600kVA                                                            |          |  |  |  |
| MUN Software version | 10h01655 V4.108.11562 (11562)                                     |          |  |  |  |
| DSP Software version | 10h01607 V9.99.150302,10h01606 V9.99.150227,10h01605 V9.99.150227 |          |  |  |  |
| LCD Software version | 10h01649 V1.06.101203 (6160:6186M)                                |          |  |  |  |
| IP Address           | 126.4.20.69                                                       |          |  |  |  |
| MAC Address          | 00:21:F3:06:7B:06                                                 |          |  |  |  |
| System date and time | 15.03.15 21:28:10                                                 |          |  |  |  |
|                      |                                                                   |          |  |  |  |
|                      |                                                                   |          |  |  |  |
|                      |                                                                   |          |  |  |  |
|                      |                                                                   |          |  |  |  |
|                      |                                                                   |          |  |  |  |
|                      |                                                                   |          |  |  |  |
| Status               | vents log Measures Battery LIFE                                   | Settings |  |  |  |

## 2.5 MODES OF OPERATION

This section illustrates the flow of power through circuit breakers, switches and UPS components during various modes of operation. The same modes of operation apply to all configurations of the Liebert NX. Highlighted (thick) lines in the diagrams indicate power flow and power availability. These illustrations do not show an alternate power source (generator) and automatic transfer switch (external to the UPS) that might be present. These illustrations do not show optional CB1 installed. If CB1 is installed, it is assumed to be closed.

#### 2.5.1 Load on Bypass

In this operating mode, the connected loads are supplied from line power via the Static Bypass Switch. The Static Bypass Switch is used to provide power to the loads if the load has been transferred from inverter or if the power conversion systems in the UPS are in a fault condition. If a severe overload or fault occurs on the UPS output, the bypass will provide additional current for 800 milliseconds to help clear the fault. If the fault is not cleared, the UPS will transfer to bypass. The bypass operating condition is displayed. From this operating mode, the UPS automatically reverts to on-line operation after the fault is corrected. Bypass operation can also be specifically selected from the control panel using the push button.

Load on Bypass is shown in **Figure 27**. The UPS system could be in this mode of operation during either initial startup or UPS system shutdown or isolation for maintenance.

## NOTICE

Risk of unexpected power loss. Can cause equipment damage.

When the critical load is being supplied power from the bypass line and Eco Mode is not active, the load is vulnerable to utility failure and fluctuations.

Figure 27 Load on bypass, UPS not operating



Figure 28 Load on bypass, UPS available



Note that **Figure 28** illustrates the UPS in Eco Mode. The one-line mimic display appears as shown in **Figure 29**.



| Invert                      | er              |               |                       | НОМЕ             |  |
|-----------------------------|-----------------|---------------|-----------------------|------------------|--|
| Measurement                 |                 |               |                       |                  |  |
| Module 1 temp. sensor 1     | A               | 20 °C   68 °F |                       |                  |  |
|                             | в               | 20 °C   68 °F | BFB                   | Green            |  |
|                             | С               | 20 °C   68 °F |                       |                  |  |
| Module 1 temp. sensor 2     | A               | 20 °C   68 °F | CB1                   | $\sim$ $-$       |  |
|                             | в               | 20 °C   68 °F |                       |                  |  |
|                             | С               | 20 °C   68 °F |                       | Green Gray Yello |  |
| Id Name                     | chronization is | Desci         | iption                | Green            |  |
| 06.006 D Operation ECO mode |                 |               |                       |                  |  |
| 06-001 ④ Inverter is Tur    | ning on         | Unicia        | speraling in 200 mode |                  |  |
| Status                      | Events lo       | g Measures    | Battery               | LIFE Settings    |  |

#### Figure 29 Eco Mode one-line mimic display

For more information on Eco Mode, see 2.6 - Eco Mode Active.

#### 2.5.2 Normal Mode—Load on UPS

#### Figure 30 Load on UPS, bypass available



#### 2.5.3 Input Power Failure—Load on DC Source

If the utility AC power source fails or is outside the acceptable range, the DC source becomes the power source for the UPS inverters. The UPS continues to supply power to the critical load and also to the UPS controls.

Use the Battery Time screen at the UPS to monitor the DC source voltage compared to the shutdown value. The time the DC source can sustain the load depends on the load's power requirements and the batteries' capacity.

The battery block in the UPS module monitor/mimic display indicates *Charge* or *Discharge* and the current in amperes.



#### Figure 31 Input power failure, load on DC source
## 2.5.4 Off DC Source

The DC source can be disconnected from the UPS, if required for maintenance, by opening all battery breakers or if single string is used, the module battery disconnect (MBD) circuit breaker. In this situation, the UPS module will continue to supply conditioned power to the critical load, but if input power fails, the UPS system cannot supply power to the load.

## NOTICE

Risk of unexpected power loss to the connected load. Can cause equipment damage. When the UPS is operating with all battery breakers or the module battery disconnect (MBD) circuit breaker(s) open, the critical load is not protected from loss of the utility source power.



#### Figure 32 Load on UPS, DC source not available

### 2.5.5 Remote Emergency Power Off

The Remote Emergency Power Off (REPO) control is a user-provided switch located remotely from the UPS system. It usually is installed in the same room as the critical load equipment. This mode can also be initiated by an automatic contact closure in the same external circuit as the manually operated switch.

When the REPO switch is operated, the UPS will shut down and open battery circuit breakers. All power through the UPS is removed from the load. In many systems, the REPO circuit also opens the circuit breakers that provide power to the bypass lines and the UPS controls. Refer to **2.7.5** - **Shut Down Single Module UPS System**.

Figure 33 Remote Emergency Power Off



To restart a UPS module after an EPO event:

- 1. Verify that the original condition that required the EPO action has been corrected.
- 2. Verify that the system is isolated and that it is safe to restart (*e.g.*, no personnel would be at risk if the system is energized, etc.).
- 3. Follow the normal startup procedures for the system based on its configuration (single module or 1+N distributed bypass multi-module system).

## 2.6 ECO MODE ACTIVE

The UPS has determined that the bypass power quality is adequate for Eco Mode operation. The touchscreen LCD will display a message that the UPS is operating on Eco Mode. Eco Mode will be symbolized on the touchscreen LCD with a leaf symbol.



Active Eco Mode is enabled on the Liebert NX 225-600 series. The mode is incorporated in all single module systems and in multi-module (distributed bypass) units with Firmware Version 1.04 or newer. It is referred to as an Active Eco Mode because the rectifier remains On to float charge the battery and the inverter controls remain powered.

Active Eco Mode in the Liebert NX 225-600 provides performance meeting the CBEMA and ITIC curves for electronic loads, providing sufficient current to ride through the transition to and from inverter operation. However, some coordination must be considered if the system includes downstream static transfer switches that base switch decisions on voltage waveforms, because these may be distorted by an event that would cause a transfer.

## 2.6.1 Eco Mode Activation and Control

Eco Mode may be activated through the touchscreen LCD. It will be the default mode of operation until it has been deactivated.

To activate Eco Mode, navigate to the Settings menu on the touchscreen LCD and choose "Enabled."

Eco Mode may also be inhibited through a signal to one of the programmable input contacts. This is normally set up to occur automatically if the UPS module becomes supplied by a backup or emergency input power supply, such as a generator.

## **Eco Mode Adjustments**

In most cases, the default tolerance settings for Eco Mode should be appropriate for correct and reliable operation. However, the limits for voltage and frequency can be adjusted by Vertiv. Contact Liebert for more information.



## 2.6.2 Active Eco Mode

If priority has been set to Active Eco Mode, the control system will allow the Liebert NX to continuously monitor the condition of the input supply, including its failure rate, to ensure maximum reliability for critical users. That analysis determines whether the Liebert NX supplies the load through the bypass source or the conditioned line. This operational mode, which allows significant energy savings by increasing the overall AC/AC efficiency of the UPS up to 98%, is primarily intended for general purpose ICT applications. However, it does not provide the same output power quality as when the UPS operates in double conversion mode. It will therefore be necessary to verify whether this mode is appropriate for special applications.

## 2.6.3 Normal—Active Eco Mode

The operating mode will depend on the quality of the source supply in the recent past. If the line quality has remained within permitted tolerance parameters, the bypass source will provide continuous supply to the critical AC load through the bypass static switch. The IGBT inverter control system will remain in constant operation and synchronization with the bypass source without driving the IGBT's. This ensures that the load can be transferred to the conditioned line within the limits of the CBEMA and ITIC curves and IEC 62040-3: 2010 Curve 1 when there is a deviation from the selected input power tolerance levels. If the direct line failure rate has been outside permitted parameters, the Liebert NX will supply the load from the conditioned line. The battery charger supplies the energy necessary for maintaining float charge to the battery.

## 2.6.4 Inverter Stop—Active Eco Mode

If the inverter is stopped for any reason, there will be no transfer to the conditioned line and the load will continue to be supplied by the bypass source. The source voltage and frequency values must be within the tolerance limits specified.

## 2.6.5 Overload—Active Eco Mode

If an overload lasting longer than the maximum capacity specified for the bypass static switch, the load is maintained on the bypass source and a message will appear on the LCD to warn about the potential risk related to this condition. This default behavior can be changed (via a service-accessible firmware setting) to force a load transfer to the conditioned line (similar to that described below), even if the bypass source is available. In the event of an overload in conjunction with an unsuitable bypass source supply, the Liebert NX will transfer the load from the bypass source) and the inverter will continue to supply the critical load for a period that depends on the degree of the overload and the UPS rating. Visual and audio alarms alert the user to the problem.

#### 2.6.6 Emergency—Due to Source Supply Failure or Variance Beyond Tolerance Limits, Active Eco Mode

If the Liebert NX is supplying the load via the bypass source and the bypass source supply varies beyond tolerance levels (adjustable using the software), the load will be transferred from the bypass source to the conditioned line. The load is powered from the source via the rectifier and inverter, (provided the input source remains within the specified tolerances). Should the input source fall below the lower limit, the batteries will be used to power the load via the inverter. The user is alerted to the battery discharge by visual and audio alarms and the remaining autonomy is displayed on the LCD. During this process, it is possible to extend the remaining autonomy by switching off nonessential loads.



### 2.6.7 Return to Normal Conditions-Active Eco Mode

When the source supply returns to within tolerance limits, the Liebert NX will continue to supply the load via the conditioned line for a period that depends on the bypass source failure rate (the conditioned line draws power from the source, not the battery). When the bypass source has stabilized, the Liebert NX resumes powering the load from the bypass source. At this time the battery charger automatically begins to recharge the battery so that maximum autonomy is available in the shortest possible time.

## 2.7 MANUAL OPERATIONS—ALL SYSTEMS

The Liebert NX UPS is designed to function unattended by an operator. The system control logic automatically handles many important functions, as explained in **2.8 - Automatic Operations**. Other procedures must be performed manually.

Manual procedures available to the operator include startup, load transfers and shutdowns. These are performed with the touchscreen and some manually operated circuit breakers and switches.

This section lists typical step-by-step instructions.

- Startup—Including initial startup, recovering from input power failure, recovering from DC source shutdown and recovering from shutdowns for emergencies or maintenance.
- Load Transfers—Including transfers from UPS to bypass and retransfers from bypass to the UPS system.
- Maintenance Bypass Load Transfers—Including transfers from internal bypass to maintenance bypass and transfers from maintenance bypass to internal bypass.
- Shutdowns-Including module shutdowns for maintenance and emergency shutdowns.

**Figures 34** through **39** illustrate the possible maintenance bypass configurations for Liebert NX systems.

#### Figure 34 Maintenance bypass configurations—Two breaker







#### Figure 35 Maintenance bypass configurations—Three breaker for single-input UPS

Figure 36 Maintenance bypass configurations—Three breaker for dual-input UPS



Figure 37 Maintenance bypass configurations—Four breaker for dual-input UPS





Figure 38 Maintenance bypass configurations—Four breaker for dual-input UPS, No CB1

Figure 39 Maintenance bypass configurations—Distributed bypass, 1+N multi-module



### 2.7.1 Startup—Single Module System

This section lists step-by-step instructions for UPSs with maintenance bypass configurations as shown in this manual. If the system has a different maintenance bypass operation, consult the provider of that system for operating procedures. The procedure assumes that the UPS installation inspection and initial startup were previously performed by Vertiv<sup>™</sup>. An Vertiv-



authorized representative must perform the initial system startup to ensure proper system operation.



Risk of electric shock. Can cause equipment damage, personal injury and death. The following procedure provides power to the critical load distribution system. Verify that the critical load distribution is ready to accept power. Make sure that personnel and equipment are ready for the critical load distribution system to be energized.

### Starting the Unit without Power Supplied to the Connected Load

If the installation includes a Maintenance Bypass, power may already be supplied to the critical load equipment through the Maintenance Bypass. If there is no power to the critical load, apply power through the UPS bypass line per the following procedure. If the load is being supplied by Maintenance Bypass, see **Startup Single Module System from Maintenance Bypass on page 38**.

During startup, power is supplied to the load through the UPS (internal) bypass line while the UPS system is being energized. Depending on the reason for the UPS shutdown, power may be present in the bypass line. To determine this, check the monitor/mimic display screen after control power is available.

## ) N

NOTE

If the system was shut down because of an Emergency Off, there may be alarm messages on the touchscreen that describe system conditions before (or at the time of) the shutdown. Some or all of the alarm conditions may have been resolved. To clear these alarm messages, turn Off control power (see **Figures 3** and **4**).

If the system is a multi-module system, verify that the UPS is in Maintenance bypass mode, then open the Module Output Breakers (in the distribution switchboard) because the output bus provides an additional source of control power.

Wait at least 10 minutes for the control power circuitry to completely de-energize. After 10 minutes, turn control power back On.



## WARNING

Risk of electric shock and high short circuit current. Can cause equipment damage, injury and death.

If the UPS has been shut down for maintenance, verify that all of the UPS system doors are closed and latched. All test equipment must be removed from the system. All electrical connections must be secure.

- 1. Before applying power to the UPS module, determine the position of the following circuit breakers and switches:
  - Optional Input Circuit Breaker (CB1)—Verify that this breaker on the front of the UPS cabinet (see **Figures 3** and **4**) is in the open position. If this breaker is not supplied, check that the remote input breaker (RIB) (which will be external to the UPS) is open.
  - Module Battery Disconnect (MBD)—Verify that this external breaker is open or tripped. If DC source cabinets are used, verify that breakers on all the cabinets are open.
  - Bypass Backfeed Breaker (BFB)—This circuit breaker (see **Figures 3** and **4**) should be open.

## NOTICE

Risk of improper operation. Can cause equipment damage.



NOTE

NOTE

If the critical load is NOT already powered through the UPS bypass, make sure that the BFB is open until instructed to close it. Failure to follow this sequence may result in equipment damage.



If power to the critical load is already supplied through this breaker, keep this breaker closed.

- 2. Start the module:
  - a. Close the Rectifier Input Breaker (RIB if there is no CB1; if the UPS has a CB1, this is referred to as the RFB [Rectifier Feeder Breaker]). This breaker is external to the UPS; it may be in the Maintenance Bypass Cabinet.
  - b. Close CB1 (located in the module) if the optional input breaker is installed.

| C | $\mathbf{)}$ |  |
|---|--------------|--|
| - | 1            |  |
|   | <b>•</b>     |  |

## The rectifier will automatically start if there are no active faults.

- c. Wait until the touchscreen LCD finishes booting up. This may takes several minutes.
- d. Clear any faults before proceeding.

## NOTICE

Risk of improper operation. Can cause equipment damage. If a fault that has been cleared recurs, contact Vertiv<sup>™</sup>. Do not continue.

## NOTICE

Risk of improper operation. Can cause equipment damage.

Do not close the back-feed breaker before the touchscreen LCD is fully booted up and faults are cleared.

- e. Close Bypass Backfeed Breaker (BFB). The equipment mimic screen will be displayed. The Static switch will turn On and the fans will be powered On. The load will now be powered by the bypass.
- f. On the touchscreen LCD, verify that the Rectifier and Booster are Green.
- g. Wait until the DC bus is above 540VDC, then close all DC breakers. Check the touchscreen LCD for messages and respond appropriately.
- h. Press the *Start Inverter* button on the touchscreen. Press *Confirm* on the pop-up window and the load will be energized from the UPS inverter.

## NOTICE

Risk of improper operation. Can cause equipment damage.

If an abnormal situation occurs during this startup procedure, open the input circuit breaker and investigate the problem. Call Vertiv if help is required.

#### 2.7.2 Startup Single Module System from Maintenance Bypass

These instructions are for standard maintenance bypass cabinets that have an SKRU, MIB and MBB. If the maintenance bypass does not have all of these components, the procedures could be different. In which case, the user should locate/create specific procedures for their system.

This process includes two operations:

- Activating the UPS internal bypass to parallel the Maintenance Bypass
- Transferring the load from the bypass lines to UPS

VERTIV

This assumes that:

- The load is being powered by the Maintenance Bypass
- The MIB is open
- The MBB is closed
- The UPS module is Off
- The RIB is open. (This breaker will be the RIB if the UPS has no CB1; it will be the Rectifier Feeder Breaker [RFB] if the UPS has an internal CB1 input breaker.)
- CB1 (internal rectifier input breaker, if present) is open
- The BFB is open and
- The DC breakers are open.
- 1. Start the module:
  - a. Close the Rectifier Input Breaker (RIB) or the Rectifier Feeder Breaker (RFB). This breaker is external to the UPS; it may be in the Maintenance Bypass Cabinet.
  - b. Close CB1 (located in the module) if the optional input breaker is installed.
  - c. Wait until the touchscreen LCD finishes booting up. This may take several minutes.
  - d. Clear any faults before proceeding.

## NOTICE

Risk of improper operation. Can cause equipment damage. If a fault that has been cleared recurs, stop immediately and contact Vertiv. Do not continue.

## NOTICE

Risk of improper operation. Can cause equipment damage. Do not close the back-feed breaker before the touchscreen LCD is fully booted up and faults are cleared.

e. Close Bypass Backfeed Breaker (BFB).

The equipment mimic screen will be displayed.

The Static switch will turn On, and the fans will be powered On.

- f. On the touchscreen LCD, verify that the Rectifier and Booster are Green and that the DC bus voltage is above 540VDC.
- g. Close the MIB. (see Step i below if using a key interlock system)

The load will now be powered by the UPS bypass in parallel with the Maintenance Bypass.

h. Close all DC (battery) breakers.

## NOTICE

Risk of improper operation. Can cause equipment damage. Do not close the battery breakers until the DC bus is above 540VDC.

- i. If using a key interlock system:
  - 1. Depress the key-release unit push button.
  - 2. Turn the key and remove it from the key-release unit.
  - 3. Insert the key into the lock for the Maintenance Isolation Breaker (MIB).
  - 4. Retract the bolt.
  - 5. Close the Maintenance Isolation Breaker (MIB).
  - 6. Verify that the DC bus is above 540VDC.
  - 7. Close all DC (battery) breakers.

### NOTICE

Risk of improper operation sequence. Can cause equipment damage.

Failure to close the Maintenance Isolation Breaker (MIB) will interrupt power to the load. Open the Maintenance Bypass Breaker (MBB). The load is now on UPS internal bypass.

- j.
- k. If using a key interlock system,
  - 1. Remove the key from the lock for the Maintenance Bypass Breaker (MBB) to lock it open.
  - 2. Reinsert the key into the solenoid.
- I. Press Start Inverter.

The load will be transferred to the UPS.



## 2.7.3 Load Transfer and Retransfer—Single Module System

Changing the load from the UPS inverter to the UPS bypass is called a *transfer*. Returning the load from the UPS bypass to the UPS system is called a *retransfer*. Note that the UPS system control logic can initiate automatic load transfers and retransfers. Refer to **2.8 - Automatic Operations**.

#### **Transfer from UPS to Bypass Procedure**

- 1. Press the Stop Inverter menu button on the touchscreen.
- 2. The load will transfer to Bypass mode and the Inverter will turn Off.

#### **Retransfer from Bypass to UPS Procedure**

- 1. Press the Start Inverter menu button on the touchscreen.
- 2. The Inverter will synchronize with the bypass and transfer the load to Normal mode.

### 2.7.4 Maintenance Bypass Load Transfers—Single Module System

Follow these instructions to manually transfer the load between the Maintenance Bypass and the UPS bypass line. Do not transfer the load between the Maintenance Bypass and the UPS module (inverter) output. Use the monitor/mimic display screen to verify that the UPS bypass line is available.

These instructions are for standard maintenance bypass cabinets that have an SKRU, MIB and MBB. If the maintenance bypass does not have all of these components, the procedures could be different. In which case, the user should locate or create specific procedures for the system.

## NOTICE

Risk of improper operation. Can cause loss of power to connected load, resulting in equipment damage. Failing to follow the proper sequence when operating any circuit breaker may damage the connected equipment. Operating a Maintenance Bypass circuit breaker out of sequence could cut Off power to the critical load.

The UPS system must be on internal bypass before the following procedures are performed or the MIB or the MBB is operated. Otherwise, the UPS may be damaged and the critical load may lose power.

#### **Transfer with Load on UPS Bypass**

- 1. Transfer the UPS system to bypass. The "OK to transfer" lamp on the key-release unit will light.
- 2. Press the *Stop Inverter* button on the touchscreen. The load will transfer to Bypass mode and the Inverter will turn Off.



### NOTE

If the maintenance bypass cabinet or switchboard has any other type of custom interlock, follow the instructions for that interlock system to remove the key.

- 3. If using a key interlock system:
  - a. Depress the key-release unit push button, turn the key and remove from key-release unit.



## NOTE

The UPS system is now locked in bypass and cannot be retransferred to the inverter until the key is reinserted.

- b. Insert the key into the lock for the Maintenance Bypass Breaker (MBB); retract the bolt.
- 4. Close the Maintenance Bypass Breaker (MBB).

## NOTICE

Risk of improper operation sequence. Can cause loss of power to connected load, resulting in equipment damage.

Failure to close the Maintenance Bypass Breaker (MBB) will interrupt power to the load.

5. Open the Maintenance Isolation Breaker (MIB). The UPS system is now isolated from the critical load, and the load is now on Maintenance Bypass.



- 6. If using a key interlock system:
  - a. Remove the key from the lock for the Maintenance Isolation Breaker (MIB).
  - b. Put the key back in the solenoid.
  - c. Open the battery breakers
- 7. If UPS bypass shutdown is required, open the Bypass Input Breaker (BIB). This breaker is external to the UPS; it may be in the Maintenance Bypass Cabinet.
- 8. Open the BFB.
- 9. Open CB1 (or the Rectifier Input Breaker [RIB] if the UPS is not equipped with CB1).

#### **Transfer with Load on Maintenance Bypass**

- 1. Verify that the module's rectifier is On and in bypass mode. See **2.7.1 Startup—Single Module System** for the startup sequence.
- 2. Close the Bypass Input Breaker (BIB) or verify that it is closed. This breaker is external to the UPS; it may be in the Maintenance Bypass Cabinet.
- 3. Close the UPS Backfeed Breaker (BFB). Refer to 2.7.1 Startup—Single Module System.
- 4. Close the battery breakers.
- 5. If using a key interlock system:
  - a. Depress the key-release unit push button.
  - b. Turn the key and remove it from the key-release unit.



### NOTE

The UPS system is now locked in bypass and cannot be retransferred to the inverter until the key is returned.

- c. Insert the key into the lock for the Maintenance Isolation Breaker (MIB);
- d. Retract the bolt.
- 6. Close the Maintenance Isolation Breaker (MIB).

### NOTICE

Risk of improper operation sequence. Can cause equipment damage.

Failure to close the Maintenance Isolation Breaker (MIB) will interrupt power to the load.

- 7. Open the Maintenance Bypass Breaker (MBB). Load is now on UPS Internal Bypass.
- 8. If using a key interlock system,
  - a. Remove the key from the lock for the Maintenance Bypass Breaker (MBB) to lock it open.
  - b. Reinsert the key into the solenoid.
- 9. The UPS system may now be transferred from bypass to UPS (see **2.7.3 Load Transfer and Retransfer Single Module System**).

#### 2.7.5 Shut Down Single Module UPS System

Perform a Module Shutdown to remove power from the UPS module.

Read all warnings in **5.0 - Maintenance** before performing any maintenance on your Liebert NX UPS. These warnings and cautions must be observed during any work on the UPS.

Use the module monitor/mimic display to determine the operating condition of the UPS module.

- 1. Press the Stop Inverter button on the touchscreen. This will put the load on bypass.
- 2. Open all DC breakers.
- 3. Open the BFB.
- 4. Open the bypass and rectifier breakers to complete the shutdown.

#### 2.7.6 Startup—1+N Multi-Module System with Maintenance Bypass Cabinet



Risk of electric shock. Can cause equipment damage, injury or death. This procedure will energize the critical bus. Notify all affected personnel before performing this procedure.

The UPS module(s) and the load should be de-energized at the beginning of this procedure. All circuit breakers external to the Vertiv-supplied equipment must be operated by customer personnel.

- 1. For initial startup, commissioning agents or authorized personnel should verify that all parallel cables are properly connected to the UPS units.
- 2. Close CB1 to the UPS module(s). If CB1 is not installed, skip this step.
- 3. Close the external rectifier and bypass feeder breakers for all modules to be started. This will start the rectifier(s). Do not proceed until the LCD is operational on all modules.
- 4. Verify that the rectifier of each module has started. If not, correct the issue before proceeding.
- 5. Verify that the DC bus is above 540VDC, then close the Module Battery Disconnect(s) (MBD's).
- 6. (If the back-feed breakers were closed and the load was supported through the bypass before **Step 1**, this will not be necessary; proceed with **Step 7**)—Close the Back Feed Breaker (BFB) on each UPS module.
- 7. Verify that the Bypass Static Switch (BPSS) becomes active when the BFB is closed.
- 8. Close the external Module Output Breaker (MOB) for each UPS module.
- 9. Verify the UPS status on the mimic screen. The load should be on the UPS bypass.
- 10. Close the Maintenance Isolation Breaker (MIB). If a maintenance bypass interlocking scheme is available, then proceed with the operation of the interlock until the MIB is closed and the MBB is opened.
- 11. Place the collector bus on inverter:
  - a. Starting with Module 1, select the Start Inverter icon on the user mimic screen.
  - b. Verify that the screen says Inverter on pending command for the inverter status.
  - c. Repeat **Steps a** and **b** for all modules. Each module will activate its inverter and turn Off the Bypass Static Switch (BPSS) after *Start Inverter* is selected on the last UPS module.



## 2.7.7 Transfer the Load from UPS to Bypass: 1+N System

These instructions are for standard maintenance bypass cabinets that have an SKRU, MIB, and MBB. If the maintenance bypass does not have all of these components, the procedures could be different. In which case, the user should locate/create specific procedures for their system.

1. Press the Stop Inverter button on each module's touchscreen. This will transfer the UPS system to bypass.



The inverters will stay online until the Stop inverter button is pressed on the last module if all modules accepted the STOP INVERTER command.

- 2. If transferring to a wrap-around Maintenance Bypass
  - a. If using a key interlock system:
    - 1. The OK to transfer lamp on the key-release unit will light.
    - 2. Depress the key-release unit push button.
    - 3. Turn the key and remove it from the key-release unit.
    - 4. Insert the key into the lock for the Maintenance Bypass Breaker (MBB).
    - 5. Retract the bolt.
  - b. Close the Maintenance Bypass Breaker (MBB).
  - c. Open the Maintenance Isolation Breaker (MIB). The UPS system is now isolated from the critical load and the load is now on Maintenance Bypass.
  - d. Open the Battery Breakers.
  - e. If using a key interlock system:
    - 1. Remove the key from the lock for the Maintenance Isolation Breaker (MIB).
    - 2. Reinsert the key into the solenoid.
    - 3. Open the MOB to all modules.
    - 4. Open the BFB for all modules.
    - 5. Open the RIB (or RFB), CB1 and BIB for all modules.

## 2.7.8 Transfer Load from Bypass to UPS: 1+N Distributed Bypass System

These instructions are for typical switchboard configurations that have an SKRU, MIB and MBB, plus an RIB or RFB and MOB for each UPS module. If the switchboard configuration does not have all of these components, the procedures could be different. In which case, the user should locate/create specific procedures for the system.

- 1. Verify that each module's rectifier is On and in bypass mode. See **2.7.6 Startup—1+N Multi-Module System** with Maintenance Bypass Cabinet for the startup sequence.
- 2. For every module in the system, close the Module Output Breaker (MOB) or verify that it is closed. This breaker is external to the UPS; it may be in the Maintenance Bypass Cabinet.
- 3. Close the battery breaker for each module in the system.
- 4. If transferring from a wrap-around Maintenance Bypass
  - a. If using a key interlock system,
    - 1. Depress the key-release unit push button.
    - 2. Turn the key and remove it from the key-release unit.
    - 3. Insert the key into the lock for the Maintenance Isolation Breaker (MIB).
    - 4. Retract the bolt.
  - b. Close the Maintenance Isolation Breaker (MIB).
  - c. Open the Maintenance Bypass Breaker (MBB). Load is now on UPS Internal Bypass.
  - d. If using a key interlock system,
    - 1. Remove the key from the lock for the Maintenance Bypass Breaker (MBB) to lock it open.
    - 2. Reinsert the key into the solenoid.
- 5. Select the *Start Inverter* icon on the touchscreen LCD of Module 1. Vertiv recommends starting with Module 1 and continuing in order when instructed to do so.
- 6. Verify that *Inverter pending on command* message is displayed in the Inverter section of the Status screen.
- 7. Repeat **Steps 5** and **6** for the remaining modules.



## NOTE

After the Start Inverter icon on the last module has been selected, all inverters will turn On simultaneously.

## 2.7.9 Load Transfer-1+N System—Remove One UPS Module from System (Collective)

## NOTICE

Risk of loss of power to the critical load. Can cause equipment damage.

If a UPS module is removed from the collector bus, the remaining modules MUST remain on inverter. Otherwise, if the offline module control power is cycled (turned Off and then On) while the bypass line(s) of the remaining UPS module(s) are connected to the collector bus, the output bus will be dropped. This will remove power from the connected load.

- 1. Verify that enough modules are online to support the load before proceeding.
- 2. Open the MOB breaker of the module to be removed.
- 3. Open the module battery disconnects of the module that has been removed from service.
- 4. Open the Backfeed Breaker (BFB) of the module that has been removed from service.
- 5. Open the upstream feeder breakers supplying the UPS rectifier and the bypass. (The rectifier will turn Off at this time).

### 2.7.10 Load Transfer-1+N System—Add One UPS Module to the System (Collective)

(Re-energize [Turn On] a partially de-energized 1+N system—Adding a module to the collector bus.) The inverters of the UPSs connected to the collector bus must be active before this procedure is begun.

## NOTICE

Risk of loss of power to the critical load. Can cause equipment damage.

A load drop will occur if the UPS modules supporting the load are in Bypass Mode and control power is applied to the offline module (assuming that paralleling cables are installed in the offline module when control power is turned On).

Paralleling cable connections should be verified by the commissioning agent or other authorized personnel.

- 1. Verify that all parallel cables are properly connected to the UPS units.
- 2. Verify that the Bypass Backfeed Breaker (BFB) is open.

## NOTICE

Risk of improper operation sequence. Can cause equipment damage.

Failure to have the BFB open until directed to close it may result in equipment damage.

- 3. Close CB1 to the UPS module. If CB1 is not installed, skip this step.
- 4. Close the external rectifier and bypass feeder breakers.

NOTE

The rectifier will start at this time. Do not proceed until the user LCD is operational. Clear any faults before proceeding. Do not continue if the UPS is displaying an Output Voltage Out Of Tolerance fault. Contact Vertiv<sup>™</sup>.

- 5. Verify that the rectifier has started. If not, correct the issue before proceeding.
- 6. Close the Back Feed Breaker (BFB). The Bypass Static Switch (BPSS) should not activate.
- 7. Verify that the DC bus is above 540VDC, then close the Module Battery Disconnect(s) (MBD's)
- 8. Use the UPS status on the mimic screen to verify that the rectifier is On and the BPSS is not active. Do not proceed if the BPSS is active. Correct the issue before proceeding.
- 9. Close the MOB. The inverter should automatically start after a short period of time. If the inverter does not start, then select the Start Inverter icon from the user mimic screen to add the inverter to the collector bus.
- 10. Verify that all inverters are connected to the collector bus and operating properly.



## 2.7.11 De-Energize 1+N System With Maintenance Bypass Cabinet

This procedure assumes that the inverters are supporting the load.

- 1. Place the collector bus on bypass:
  - a. Starting with Module 1, select the Stop Inverter icon on the user mimic screen.
  - b. Verify that the inverter status is Inverter off pending command.
  - c. Repeat **Steps a** and **b** for all modules. Each module will activate its Bypass Static Switch (BPSS) and turn Off its inverter after the *Stop Inverter* is selected on the last UPS module.
- 2. Verify that the load is on bypass power.
- 3. Close the Maintenance Bypass Breaker (MBB). If a maintenance bypass interlocking scheme is available, proceed with the operation of the interlock until the MBB is closed and the Maintenance Isolation Breaker (MIB) is opened.
- 4. Open the external Module Output Breaker (MOB) on each UPS module. The inverters will not turn Off until All modules have accepted the instruction.

## NOTICE

Risk of improper operation. Can cause overheating resulting in equipment damage. Complete **Steps 5** through **7** as quickly as possible. The steps above will cause the fans to stop. Leaving the UPS in this mode for long may cause the rectifiers to overheat and shut down.

- 5. Open the Module Battery Disconnect (MBD) on each UPS module.
- 6. Open the Back Feed Breaker (BFB) on each UPS module.
- 7. Open the upstream feeds to the UPS rectifier and bypass buses. This will shut Off the rectifier.

## 2.8 AUTOMATIC OPERATIONS

The Liebert NX UPS is designed to function unattended by an operator. The system control logic monitors the performance of the UPS, the availability of power sources and the current required by the critical load.

The system control logic:

- Determines what overload conditions can be sustained without a transfer to bypass.
- Initiates an automatic transfer to bypass to sustain an overload or when selected UPS faults occur.
- Can initiate an automatic retransfer to the UPS after an overload has been cleared.
- Initiates an automatic transfer to bypass and emergency module shutdown when specified UPS faults occur.

The Overload Transfer and Output Undervoltage alarm messages will initiate an automatic transfer to bypass. Other UPS faults will initiate an automatic transfer to bypass followed immediately by the shutdown and isolation of the UPS.

If a manual transfer is required and the UPS is not synchronized to the bypass, there may be a delay ranging from 4 milliseconds to 120 milliseconds (adjustable by Vertiv) before the transfer is complete.

## NOTE

A load transfer to the bypass line will be completed whenever an automatic transfer to bypass is initiated and the bypass line is available. If the OK to Transfer condition is present, the load transfer will be uninterrupted. If the status message saying Source of synchronization is the selfclock or Source of synchronization is the bypass is present, the automatic transfer will be interrupted for 4 to 120 milliseconds (default is 16 milliseconds). The reliability of the UPS components makes an interrupted load transfer unlikely.

## 2.8.1 Overloads (Without Transfer)

NOTE



A load transfer to the bypass line will be completed whenever an automatic transfer to bypass is initiated. If the message Source of Synchronization is the Bypass is present, the load transfer will be uninterrupted.

If a status message saying Source of synchronization is the self-clock or Source of synchronization is the bypass is present, the automatic transfer will be interrupted for 4 to 120 milliseconds. The reliability of the UPS components makes an interrupted load transfer unlikely.

The UPS is capable of sustaining full output voltage (±2% of the nominal voltage) for overload conditions that remain within (under) the current-versus-time curve of overload capacity (**Table 3**).

Note that the time scale is not linear.

For high current demands of short duration (momentary overloads), the critical load is supplied simultaneously by both the UPS system and the bypass line. Whenever an overload condition occurs, you should determine the cause of the overload. If an overload condition exceeds the overload capacity, the UPS system initiates an automatic load transfer to the bypass line.

For overloads above the Input Current Limit, a DC source, such as a battery system or a generation source, must be available. The Input Current limit has a default setting of 125% rated output current.

|          | Overload Time, sec. (min.) |                  |                  |                |                |
|----------|----------------------------|------------------|------------------|----------------|----------------|
| Load (%) | 104°F (40°C)               | 95°F (35°C)      | 86°F (30°C)      | 77°F (25°C)    | 60°F (20°C)    |
| 101      | 8249.9 (137.5)             | 10,999.8 (183.3) | 13,749.8 (229.2) | 16,499.7 (275) | 16,499.7 (275) |
| 105      | 1650.0 (27.5)              | 2200.0 (36.7)    | 2750.0 (45.8)    | 3299.9 (55)    | 3299.9 (55)    |
| 110      | 825.0 (13.75)              | 1100.0 (18.3)    | 1375.0 (22.9)    | 1650.0 (27.5)  | 1650.0 (27.5)  |
| 115      | 550.0 (9.2)                | 733.3 (12.2)     | 916.7 (15.3)     | 1100.0 (18.3)  | 1100.0 (18.3)  |
| 120      | 412.5 (6.9)                | 550.0 (9.2)      | 687.5 (11.5)     | 825.0 (13.8)   | 825.0 (13.8)   |
| 125      | 319.4 (5.3)                | 425.9 (7)        | 532.4 (8.9)      | 638.9 (10.6)   | 638.9 (10.6)   |
| 130      | 222.2 (3.7)                | 296.3 (4.9)      | 370.3 (6.2)      | 444.4 (74)     | 444.4 (74)     |
| 135      | 152.7 (2.5)                | 203.6 (3.4)      | 254.6 (4.2)      | 305.5 (5)      | 305.5 (5)      |
| 140      | 100.6 (1.7)                | 134.2 (2.2)      | 167.7 (2.8)      | 201.3 (3.4)    | 201.3 (3.4)    |
| 145      | 36.7 (—)                   | 48.9 (—)         | 61.1 (1.0)       | 73.3 (1.2)     | 73.3 (1.2)     |
| 150      | 27.7 (—)                   | 37.0 (—)         | 46.2 (—)         | 55.4 (—)       | 55.4 (—)       |
| 155      | 7.3 (—)                    | 9.7 (—)          | 12.1 (—)         | 14.6 (—)       | 14.6 (—)       |
| 160      | 7.3 (—)                    | 9.7 (—)          | 12.1 (—)         | 14.5 (—)       | 14.5 (—)       |
| 165      | 7.3 (—)                    | 9.7 (—)          | 12.1 (—)         | 14.5 (—)       | 14.5 (—)       |

#### Table 3 Current-versus-time curves of overload capacity

The inverter overload is based on 104°F (40°C) ambient. At lower ambient temperatures, the overload timers automatically adjust to longer run times.

## 2.8.2 Automatic Transfers to Bypass (Overload Condition)

The UPS will initiate an automatic load transfer to the bypass line if an overload exceeds the current-versus-time curve of overload. If the UPS module shuts down due to an overload, the

VERTIV

module will restart and automatically retransfer once the load is reduced to 100% or less. Vertiv™ can program other thresholds, such as 95%, if desired.

## 2.8.3 Automatic Transfers to Bypass, UPS System Faults

For specified UPS system faults, the control logic will initiate an automatic transfer to bypass followed immediately by a shutdown and isolation of the UPS. The DC source (MBD) and input circuit breakers are open. The bypass static switch will be closed if the bypass line is available.

NOTE

#### The bypass line is usually not available during Low-Battery Shutdown.

The following UPS system faults will initiate an automatic transfer to bypass:

- DC Overvoltage Shutdown
- Inverter Fault
- Low-Battery Shutdown
- Output Overvoltage and Undervoltage
- Overload Shutdown
- Equipment Overtemperature
- Rectifier Fuse Blown

Some installations may include a Remote Emergency Power Off mode that can be initiated automatically by a contact closure in the critical load equipment. Refer to **2.5.5** - **Remote Emergency Power Off**.

## 2.8.4 Automatic Retransfers to UPS

The following critical bus conditions must be present to initiate an automatic retransfer of the critical load from the bypass source to the UPS inverter:

- Critical load was initially transferred to the bypass source due to a system overload only. A manual retransfer from bypass is required if the transfer to bypass was caused by any condition other than output overload.
- Overload has since dropped below 100% of the rated load.
- Both the input and the DC source (MBD) circuit breakers have remained closed since the overload transfer.
- *OK to Transfer* signal received from the control logic for at least 10 seconds, within 5 minutes of the system overload transfer. A manual retransfer from bypass is required for overloads lasting 5 minutes or more.
- Cyclic-type overloads, which occur up to five (range is zero to five) times in 60 minutes, are automatically returned to the inverter for each event including the Nth overload.

## NOTE

The UPS can be set during initial commission to prevent automatic retransfers. Vertiv can alter the UPS later to prevent automatic retransfers.



## 3.0 UPS MESSAGES: STATUS, WARNING, FAULT

The Liebert NX 225-600 generates three types of messages based on the severity of the condition. The severity of the message will be indicated in the display.

- Status—The system is operating normally and no warning or alarm has occurred.
- Warning—Abnormal conditions exist that could affect the normal operation of the UPS. These conditions do not originate with the UPS, but may be caused either by the surrounding environment or by the electrical installation (line power side and load side).
- Fault—Immediate attention should be given to the severity of the alarm, and service should be called promptly.

Each message has a message ID number, which is displayed in the first column of the display screen. When contacting Vertiv for support regarding a message, refer to this message ID number.

| Message<br>ID # | Message<br>Type/Severity | Name                                        | Description                                                                         |
|-----------------|--------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|
| 0               | Status                   | The CPU is Overloaded                       |                                                                                     |
| 0               | Status                   | The RAM Used is Very High                   |                                                                                     |
| 0               | Status                   | Parameter Read Failed                       | A parameter could not be read from the DIC                                          |
| 0               | Status                   | Parameter Set Failed                        | A parameter could not be written to the DIC                                         |
| 00-000          | Status                   | Warning Pending                             | A warning condition has been detected.                                              |
| 00-001          | Status                   | Fault pending                               | A fault condition has been detected.                                                |
| 00-002          | Status                   | General fault                               |                                                                                     |
| 00-003          | Status                   | Parallel Unit                               | This unit is part of a parallel installation                                        |
| 00-004          | Status                   | ECO mode enabled                            | Unit is configured to operate in ECO mode                                           |
| 00-005          | Status                   | External Synchronization Enabled            | The possibility to synchronize externally this unit is enabled                      |
| 00-006          | Status                   | Inverter or Rectifier OFF<br>Command Issued | An inverter or rectifier off command has been issued<br>(via display or via client) |
| 00-007          | Status                   | Shutdown Pending                            | The UPS is going to shutdown                                                        |
| 00-009          | Status                   | Inverter on Rectifier                       | The inverter is supplied by the rectifier                                           |
| 00-010          | Status                   | Inverter on Battery                         | The inverter is supplied by the battery                                             |
| 00-011          | Status                   | Parameter Reset Active                      | A Parameter reset has been done; check and confirm all settings                     |
| 00-023          | Status                   | System Power UP                             | The system is currently starting                                                    |
| 00-034          | Status                   | CPU Time Slice Exceeded                     |                                                                                     |
| 00-130          | Status                   | CAN Timeout                                 | DSP Status word not received for more than 2 min                                    |
| 00-131          | Status                   | SKRU: Inverter start Inhibited              | Inverter Start inhibited by SKRU Unit key                                           |
| 01-000          | Status                   | Bypass is not Present                       |                                                                                     |
| 01-001          | Status                   | Bypass is on                                |                                                                                     |
| 01-002          | Status                   | Bypass is Off                               |                                                                                     |
| 01-003          | Status                   | Bypass Stopped Due to Fault                 |                                                                                     |
| 01-004          | Status                   | Bypass not Prepared                         |                                                                                     |

#### Table 4 UPS status, warning and fault messages



| Message<br>ID # | Message<br>Type/Severity | Name                                          | Description                             |
|-----------------|--------------------------|-----------------------------------------------|-----------------------------------------|
| 01-005          | Status                   | Bypass Fault                                  |                                         |
| 01-006          | Status                   | Bypass Mains is out of Tolerance              |                                         |
| 01-007          | Status                   | Bypass Warning                                |                                         |
| 01-008          | Status                   | Bypass Available with Delay                   |                                         |
| 01-029          | Status                   | Parallel Bypass OK                            |                                         |
| 01-030          | Status                   | Parallel Bypass one Fault                     |                                         |
| 01-031          | Status                   | Parallel bypass at Least one OK               |                                         |
| 01-032          | Status                   | Parallel Bypass Fault                         |                                         |
| 01-033          | Status                   | Parallel Bypass Failure                       | The parallel bypass has a failure       |
| 02-000          | Status                   | Rectifier is off                              |                                         |
| 02-001          | Status                   | Rectifier is Turning on                       |                                         |
| 02-002          | Status                   | Rectifier is on                               |                                         |
| 02-004          | Status                   | Rectifier Fault                               |                                         |
| 02-005          | Status                   | Rectifier Mains is out of Tolerance           |                                         |
| 02-006          | Status                   | No Precharge in Progress                      |                                         |
| 02-007          | —                        | _                                             |                                         |
| 02-008          | _                        | _                                             |                                         |
| 02-009          | Status                   | Rectifier Warning                             |                                         |
| 02-011          | Status                   | Precharge in Progress                         |                                         |
| 02-012          | Status                   | Walk-in in Progress                           |                                         |
| 02-013          | Status                   | Precharge Finished                            |                                         |
| 03-000          | Status                   | Charger is on standby - (not<br>charging)     |                                         |
| 03-001          | Status                   | Charger is on                                 |                                         |
| 03-002          | Status                   | Charger is off                                |                                         |
| 03-003          | Status                   | Charger is Forced to Charge                   |                                         |
| 03-005          | Status                   | Charger Warning                               |                                         |
| 03-006          | Status                   | Charger Fault                                 |                                         |
| 04-000          | Status                   | Battery Warning                               |                                         |
| 04-001          | Status                   | Battery Fault                                 |                                         |
| 04-002          | Status                   | Battery Idle                                  |                                         |
| 04-006          | Status                   | One/several Battery Breaker(s)<br>is/are open |                                         |
| 04-007          | Status                   | A Battery Conditioning is in<br>Progress      |                                         |
| 04-032          | Status                   | Automatic Battery Test Started                |                                         |
| 04-033          | Status                   | Battery Test Requested                        | A battery test start has been requested |
| 04-035          | Status                   | Battery Test Failed                           |                                         |
| 04-048          | Status                   | Battery Test Idle                             |                                         |
| 04-049          | Status                   | MUN Synchronization Done                      |                                         |
| 05-000          | Status                   | Booster is off                                |                                         |

### Table 4 UPS status, warning and fault messages (continued)

| Message<br>ID # | Message<br>Type/Severity | Name                                        | Description                                             |
|-----------------|--------------------------|---------------------------------------------|---------------------------------------------------------|
| 05-001          | Status                   | Booster is Turning on                       |                                                         |
| 05-002          | Status                   | Booster is on                               |                                                         |
| 05-003          | Status                   | Booster Stopped Due to Fault                |                                                         |
| 05-004          | Status                   | Booster Fault                               |                                                         |
| 05-005          | Status                   | Booster Warning                             |                                                         |
| 05-018          | Status                   | Booster Runs from Battery                   | The Booster/Charger is taking energy out of the battery |
| 06-000          | Status                   | Inverter is off                             |                                                         |
| 06-001          | Status                   | Inverter is Turning on                      |                                                         |
| 06-002          | Status                   | Inverter is on                              |                                                         |
| 06-003          | Status                   | Inverter Stopped Due to Fault               |                                                         |
| 06-004          | Status                   | Inverter Fault                              |                                                         |
| 06-005          | Status                   | Source of Synchronization is the Bypass     |                                                         |
| 06-006          | Status                   | Source of Synchronization is the<br>Output  |                                                         |
| 06-007          | Status                   | Source of Synchronization is the Self Clock |                                                         |
| 06-008          | Status                   | Source of Synchronization is<br>External    |                                                         |
| 06-010          | Status                   | Inverter Warning                            |                                                         |
| 06-011          | Status                   | Inverter out of Synchronization             | Inverter out of synchronization with internal Bypass    |
| 06-012          | Status                   | Battery Test Idle                           |                                                         |
| 06-013          | Status                   | Battery Test Not Possible                   |                                                         |
| 06-014          | Status                   | Battery Test running                        |                                                         |
| 06-015          | Status                   | Battery Test Failed                         |                                                         |
| 06-016          | Status                   | Inverter out of Synchronization             | Inverter out of synchronization with external source    |
| 06-086          | Status                   | Operation: ECO mode                         | Unit is operating in ECO mode                           |
| 07-000          | Status                   | Load Supplied by Inverter                   |                                                         |
| 07-001          | Status                   | Load Supplied by Bypass                     |                                                         |
| 07-002          | Status                   | Load Supplied by Maintenance<br>Bypass      |                                                         |
| 07-003          | Status                   | Load is currently not supplied              |                                                         |
| 07-004          | Status                   | Load on Low Priority Line                   |                                                         |
| 07-005          | Status                   | Load on Phase A > 85%                       |                                                         |
| 07-006          | Status                   | Load on Phase B > 85%                       |                                                         |
| 07-007          | Status                   | Load on Phase C > 85%                       |                                                         |
| 07-008          | Status                   | Load warning                                |                                                         |
| 08-000          | Status                   | MUN Warning                                 |                                                         |
| 08-001          | Status                   | MUN has a Fault                             |                                                         |
| 08-003          | Status                   | UPS Model Detection in Progress             |                                                         |
| 08-004          | Status                   | MUN Initialization Finished                 |                                                         |

#### Table 4 UPS status, warning and fault messages (continued)



| Message<br>ID # | Message<br>Type/Severity | Name                                               | Description                                                      |
|-----------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------|
| 08-005          | Status                   | MUN Reboot Required                                | MUN initialization finished, but a reboot is required            |
| 08-006          | Status                   | Set UPS Date and Time                              |                                                                  |
| 08-011          | Status                   | System Started                                     |                                                                  |
| 08-013          | Status                   | E.P.O.                                             | The emergency power off has been activated                       |
| 08-025          | Status                   | Acknowledge Button has been<br>Pressed             |                                                                  |
| 08-026          | Status                   | The UPS Clock Time is not Valid                    |                                                                  |
| 08-027          | Status                   | The UPS Clock has not been set yet                 |                                                                  |
| 08-029          | —                        | —                                                  |                                                                  |
| 08-030          | Status                   | Event Log Deleted Due to Data<br>Corruption        |                                                                  |
| 08-031          | Status                   | Temporary Event Log Deleted due to Data Corruption |                                                                  |
| 08-032          | Status                   | A File was Removed Due to Data<br>Corruption       |                                                                  |
| 08-033          | Status                   | Life Call in Progress                              | LIFE is calling the life station                                 |
| 08-034          | Status                   | Life Call Rescheduled                              | Last LIFE call was unsuccessful and is rescheduled               |
| 08-035          | Status                   | Life Modem not Detected                            | Check internal Modem or external Modem cabling and power supply  |
| 14-003          | Status                   | Battery is Charging                                |                                                                  |
| 14-008          | Status                   | Battery Test in Progress                           | A battery test is in progress                                    |
| 14-018          | Status                   | Battery Autonomy Test Running                      |                                                                  |
| 14-034          | Status                   | Battery Test Running                               |                                                                  |
| 14-036          | Status                   | Battery Test Not Allowed                           | Test is not possible                                             |
| 14-037          | Status                   | Battery Test Finished OK                           |                                                                  |
| 14-038          | Status                   | Battery Test Canceled                              |                                                                  |
| 14-050          | Status                   | Battery Test Interrupted                           |                                                                  |
| 14-051          | Status                   | Battery Test Stopped by User                       |                                                                  |
| 16-029          | Status                   | Inverter Pending on Command                        |                                                                  |
| 20-018          | Warning                  | Commissioning / Test Mode                          | The commissioning or test mode is currently initiated            |
| 20-019          | Warning                  | Maintenance Bypass                                 | The unit maintenance bypass switch is currently closed           |
| 20-022          | Warning                  | Synchronization System Fault                       | The external synchronization signal is outside acceptable window |
| 20-024          | Warning                  | System Shutdown                                    | A system shutdown is imminent                                    |
| 20-025          | Warning                  | The ID Card is Missing                             | Please insert the ID card                                        |
| 20-026          | Warning                  | Calibration is Started                             |                                                                  |
| 20-027          | Warning                  | Input Air Temperature High                         | Check Air Flow and Fans                                          |
| 20-028          | Warning                  | Input Air Temp. out of Range                       | Check Sensors                                                    |
| 20-029          | _                        |                                                    |                                                                  |
| 20-031          | Warning                  | SBS Output Switch open                             | The system output switch is open                                 |
| 20-032          | Warning                  | SBS Bypass Switch closed                           | The system bypass switch is closed                               |

| Table 4 | UPS status, warning and fault messages (continued) |
|---------|----------------------------------------------------|
|---------|----------------------------------------------------|

| Message<br>ID # | Message<br>Type/Severity | Name                                            | Description                                                             |
|-----------------|--------------------------|-------------------------------------------------|-------------------------------------------------------------------------|
| 20-127          | —                        | —                                               | —                                                                       |
| 20-132          | Warning                  | BIB Communication                               | Communication with BIB boards failed or BIB configuration mismatch      |
| 20-133          | Warning                  | Ground Fault                                    | Ground Fault                                                            |
| 21-012          | Warning                  | Bypass Input Switch Open                        |                                                                         |
| 21-013          | Warning                  | Bypass Mains Failure                            |                                                                         |
| 21-014          | Warning                  | Bypass Overload                                 |                                                                         |
| 21-016          | Warning                  | Bypass Disabled                                 | Bypass disabled due to DC Bus low voltage                               |
| 21-017          | Warning                  | Bypass Overtemperature                          | Bypass reports overtemperature                                          |
| 21-018          | Warning                  | Bypass Mode not Auto                            | Bypass mode is not set to automatic                                     |
| 21-037          | Warning                  | Bypass Input Fuse Blown                         |                                                                         |
| 21-038          | Warning                  | Parallel Bypass Failure                         |                                                                         |
| 22-014          | Warning                  | Rectifier Input Switch Open                     |                                                                         |
| 22-015          | Warning                  | Rectifier Mains Failure                         |                                                                         |
| 22-016          | Warning                  | Rectifier Overload                              |                                                                         |
| 22-017          | Warning                  | Wrong Phase Rotation                            |                                                                         |
| 22-018          | Warning                  | DC Voltage Low                                  |                                                                         |
| 22-019          | Warning                  | Rectifier Overtemperature                       |                                                                         |
| 22-020          | Warning                  | Rectifier Out of Synchronization                | Rectifier is temporarily stopped                                        |
| 22-021          | Warning                  | Peak in Input Voltage                           |                                                                         |
| 22-022          | Warning                  | Input Current Reached Limit                     |                                                                         |
| 22-044          | Warning                  | Rectifier Input Fuse Broken                     |                                                                         |
| 23-007          | Warning                  | Communication to charger is<br>Perturbed        |                                                                         |
| 23-008          | Warning                  | Charger Actual Values Differ from set Values    |                                                                         |
| 23-010          | Warning                  | Charger is on, but Voltage Does<br>Not Raise    | Bad battery or defective charger                                        |
| 23-011          | Warning                  | Charger is off, but Voltage does not Raise      | Bad battery or defective charger                                        |
| 23-012          | Warning                  | There is no Battery Connected to the Charger    |                                                                         |
| 23-013          | Warning                  | Charger Forced on but Voltage<br>does not Raise |                                                                         |
| 23-014          | Warning                  | Reversed Polarity                               | Check the battery connection to the charger                             |
| 24-004          | Warning                  | Battery is Discharging                          |                                                                         |
| 24-010          | Warning                  | Battery Lifetime Exceeded                       | The battery should be replaced                                          |
| 24-012          | Warning                  | Battery Undervoltage                            |                                                                         |
| 24-014          | Warning                  | Battery Test Recommended                        | It is recommended to verify the battery performance with a battery test |
| 24-015          | Warning                  | High Battery Temperature                        |                                                                         |
| 24-016          | Warning                  | Battery Temperature out of Range                | The battery temperature is out of limit                                 |
| 24-017          | Warning                  | Battery Temperature Probe                       | The temperature probe is not connected or broken                        |

 Table 4
 UPS status, warning and fault messages (continued)



| Message<br>ID # | Message<br>Type/Severity | Name                                           | Description                                                                                      |
|-----------------|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 24-039          | Warning                  | Battery #1 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-040          | Warning                  | Battery #2 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-041          | Warning                  | Battery #3 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-042          | Warning                  | Battery #4 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-043          | Warning                  | Battery #5 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-044          | Warning                  | Battery #6 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-045          | Warning                  | Battery #7 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-046          | Warning                  | Battery #8 is Open                             | The designated battery circuit breaker is open                                                   |
| 24-047          | Warning                  | Battery #9 is Open                             | The designated battery circuit breaker is open                                                   |
| 25-006          | Warning                  | Booster Min Voltage                            | The minimal voltage to switch on the booster has not been reached                                |
| 25-007          | Warning                  | Booster/Charger<br>Overtemperature             | The Booster/Charger reports an overtemperature                                                   |
| 26-024          | Warning                  | Inverter Overtemperature                       |                                                                                                  |
| 26-025          | Warning                  | Inverter DC Undervoltage                       |                                                                                                  |
| 26-026          | Warning                  | Inverter Overload                              |                                                                                                  |
| 26-027          | Warning                  | Inverter is off                                |                                                                                                  |
| 26-028          | Warning                  | Inverter Pending Off Command                   |                                                                                                  |
| 26-030          | Warning                  | Inverter Overload                              | Current limitation is active                                                                     |
| 26-031          | Warning                  | Inverter Overload                              | KW Protection                                                                                    |
| 26-032          | Warning                  | The Inverter is Off                            | due to a shutdown command                                                                        |
| 27-009          | Warning                  | Output Switch is Open                          |                                                                                                  |
| 27-010          | Warning                  | Load is Currently not Supplied                 |                                                                                                  |
| 27-011          | Warning                  | Retransfer is Inhibited                        |                                                                                                  |
| 27-012          | Warning                  | Load is Supplied by the Bypass                 |                                                                                                  |
| 27-013          | Warning                  | Load is Supplied by the<br>Maintenance Bypass  |                                                                                                  |
| 27-020          | Warning                  | Load Not Supplied (for<br>Countdown Timer)     |                                                                                                  |
| 27-023          | Warning                  | System Output Switch Open                      |                                                                                                  |
| 27-024          | Warning                  | Load not Supplied for Battery<br>Autonomy End  |                                                                                                  |
| 27-025          | Warning                  | Load not supplied for Inverter<br>Autonomy End |                                                                                                  |
| 28-008          | Warning                  | CAN Communication Disturbed                    |                                                                                                  |
| 28-056          | Warning                  | UPS Model Cannot be Identified                 | Check CAN communication and the system settings                                                  |
| 30-020          | Fault                    | Fan Life Exceeded                              | The expected fan life is exceeded - The fan should be replaced during the next maintenance visit |
| 30-033          | Fault                    | Battery Switch Close not Allowed               | Do not close the battery switch, check DC bus voltage                                            |
| 30-036          | Fault                    | Incorrect Power Class                          | The power class from this unit needs to be specified                                             |
| 30-038          | Fault                    | Bypass Illegal Software Status                 | Bypass illegal software status                                                                   |
| 30-039          | Fault                    | Rectifier Illegal Software Status              | Rectifier illegal software status                                                                |

| Table 4 | UPS status.  | warning ar | nd fault messag | ges (continued) |
|---------|--------------|------------|-----------------|-----------------|
|         | or o status, | warning ar | ia raute messag | ges (continueu) |

|                 | ,                        | <b>. .</b> .                                            |                                                                     |
|-----------------|--------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
| Message<br>ID # | Message<br>Type/Severity | Name                                                    | Description                                                         |
| 30-040          | Fault                    | Inverter Illegal Software State                         |                                                                     |
| 30-049          | Fault                    | CCB Signal Hardware Failure                             | The CCB signal board needs to be replaced                           |
| 30-053          | Fault                    | DSAVE Active                                            | DSAVE Signal Active                                                 |
| 30-054          | Fault                    | Checksum Fault                                          | EEPROM checksum fault                                               |
| 30-055          | Fault                    | I2C Initialization                                      | I2C Initialization Failed                                           |
| 30-056          | Fault                    | I2C I/O expander                                        | I2C Multiple Error I/O expander                                     |
| 30-057          | Fault                    | ID-Card Access                                          | ID-card access error                                                |
| 30-059          | Fault                    | Ambient Temperature Probe                               | The input air temperature probe has a malfunction                   |
| 30-071          | Fault                    | Parallel Cable Missing                                  | Parallel cable fitted signal missing                                |
| 30-072          | Fault                    | Main State Machine Error                                | Incorrect state in main state machine                               |
| 30-073          | Fault                    | State Machine Error                                     | Incorrect state in State machine                                    |
| 30-074          | Fault                    | Generic Error                                           | Generic Software Error                                              |
| 30-075          | Fault                    | ID-Card Error                                           | Generic Error in ID-Card                                            |
| 30-076          | Fault                    | RAM Error                                               | Insufficient RAM in ID-card                                         |
| 30-077          | Fault                    | Parameter Init                                          | Bootstrap initialization of parameters called at runtime            |
| 30-078          | Fault                    | Parallel Timeout                                        | Parallel node identification timeout                                |
| 30-079          | Fault                    | Parallel Identification                                 | Parallel node identification error                                  |
| 30-080          | Fault                    | Parallel Impossible                                     | Parallel node identification not possible                           |
| 30-134          | Fault                    | Battery Overvoltage EPO                                 | Battery overvoltage emergency power off                             |
| 31-015          | Fault                    | Wrong Phase Rotation                                    |                                                                     |
| 31-020          | Fault                    | E.P.O.                                                  |                                                                     |
| 31-021          | Fault                    | Bypass Hardware Failure                                 | The bypass board needs to be replaced                               |
| 31-022          | Fault                    | Bypass Hardware Failure                                 |                                                                     |
| 31-023          | Fault                    | Backfeed Protection                                     | Investigate the cause of the backfeed and reset the fault           |
| 31-024          | Fault                    | Overtemperature                                         | Verify if fans are working properly and reset the fault             |
| 31-026          | Fault                    | Overload                                                | Investigate the cause of the overload condition and reset the fault |
| 31-027          | Fault                    | Bypass Mains Failure During<br>Dynamic Support          |                                                                     |
| 31-028          | Fault                    | Parallel Bypass Mains Failure<br>During Dynamic Support |                                                                     |
| 31-035          | Fault                    | Overtemperature                                         |                                                                     |
| 31-036          | Fault                    | Overtemperature                                         |                                                                     |
| 31-039          | Fault                    | Battery Overvoltage EPO                                 | Battery Overvoltage emergency power off                             |
| 32-003          | Fault                    | Rectifier Stopped Due to Fault                          |                                                                     |
| 32-024          | Fault                    | E.P.O.                                                  |                                                                     |
| 32-025          | Fault                    | Rectifier Precharge Failure                             |                                                                     |
| 32-026          | Fault                    | Rectifier Precharge Failure                             |                                                                     |
| 32-027          | Fault                    | Rectifier Precharge Failure                             |                                                                     |
| 32-028          | Fault                    | Rectifier Temperature fault                             | Check air flow and fans                                             |

 Table 4
 UPS status, warning and fault messages (continued)



| Message<br>ID # | Message<br>Type/Severity | Name                                                | Description                                                               |
|-----------------|--------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|
| 32-029          | Fault                    | Rectifier Temperature Fault                         |                                                                           |
| 32-030          | Fault                    | Rectifier Temperature Fault                         |                                                                           |
| 32-031          | Fault                    | Rectifier DC Overvoltage                            |                                                                           |
| 32-032          | Fault                    | Rectifier Desaturation Failure                      |                                                                           |
| 32-033          | Fault                    | Rectifier Desaturation Failure                      |                                                                           |
| 32-034          | Fault                    | Rectifier desaturation Failure                      |                                                                           |
| 32-035          | Fault                    | Rectifier Synchronization Failure                   | Rectifier cannot synchronize with mains                                   |
| 32-036          | Fault                    | Rectifier Overcurrent Failure                       | Continuous Overcurrent                                                    |
| 32-045          | Fault                    | Battery Overvoltage EPO                             | Battery overvoltage emergency power off                                   |
| 32-046          | Fault                    | Rectifier Desaturation XINT                         |                                                                           |
| 32-047          | Fault                    | Rectifier Desaturation Generic                      |                                                                           |
| 33-009          | Fault                    | Charger on Command, but Input<br>Voltage is too Low | Defective charger input fuses or defective charger                        |
| 33-016          | Fault                    | Charger Hardware Failure                            | No connection to the charger or defective charger                         |
| 33-017          | Fault                    | Charger Overcurrent                                 | Current limitation control lasts >10ms, charger tripped                   |
| 33-018          | Fault                    | Charger Temperature High                            | Temperature above threshold or not reliable                               |
| 33-019          | Fault                    | Charger Temperature High                            |                                                                           |
| 33-020          | Fault                    | Charger Temperature High                            |                                                                           |
| 33-021          | Fault                    | Charger De-Saturation                               | Charger IGBT de-saturation                                                |
| 33-022          | Fault                    | Charger Redundant Voltage Error                     | Primary and secondary voltage acquisition difference                      |
| 33-023          | Fault                    | Charger DC Bus                                      | DC Bus Overvoltage                                                        |
| 33-025          | Fault                    | Charger Voltage out of Limit                        | Charger switched off due to an overvoltage of the battery                 |
| 33-035          | Fault                    | E.P.O.                                              |                                                                           |
| 33-037          | Fault                    | Battery Overvoltage EPO                             | Battery overvoltage emergency power off                                   |
| 34-005          | Fault                    | There is no Battery Connected                       | Connect the Battery                                                       |
| 34-009          | Fault                    | Battery Switch Open                                 | Connect the battery                                                       |
| 34-011          | Fault                    | Rest time exceeded                                  | The calculated battery rest time is now under the low battery signal time |
| 34-013          | Fault                    | Depleted battery                                    | The Battery remaining time is estimated to be close to 0                  |
| 34-019          | Fault                    | External Battery Breaker Open                       | Close the battery breaker                                                 |
| 34-021          | Fault                    | Reverse Polarity                                    | Check battery connection polarity                                         |
| 34-022          | Fault                    | Battery Overvoltage                                 |                                                                           |
| 34-023          | Fault                    | Battery Test Failure                                | A battery test stopped due to a fault                                     |
| 34-024          | Fault                    | Battery Fuse is Blown                               | A Battery fuse has opened                                                 |
| 34-061          | Fault                    | DC Ground Fault                                     |                                                                           |
| 35-009          | Fault                    | E.P.O.                                              |                                                                           |
| 35-010          | Fault                    | DC Bus Overcurrent                                  |                                                                           |
| 35-011          | Fault                    | Booster/Charger<br>Overtemperature                  |                                                                           |

 Table 4
 UPS status, warning and fault messages (continued)

| Message<br>ID # | Message<br>Type/Severity | Name                                       | Description                                                         |
|-----------------|--------------------------|--------------------------------------------|---------------------------------------------------------------------|
| 35-012          | Fault                    | Booster/Charger<br>Overtemperature         |                                                                     |
| 35-013          | Fault                    | Booster/Charger<br>Overtemperature         |                                                                     |
| 35-014          | Fault                    | Booster/Charger Desaturation               |                                                                     |
| 35-015          | Fault                    | Battery Voltage Measurement<br>Malfunction | The battery voltage measurement reports a malfunction               |
| 35-016          | Fault                    | Charger DC Bus                             | DC bus overvoltage                                                  |
| 35-019          | Fault                    | Battery Overvoltage EPO                    | Battery overvoltage emergency power off                             |
| 36-034          | Fault                    | E.P.O.                                     |                                                                     |
| 36-035          | Fault                    | Overtemperature                            | Verify if fans are working properly, and reset the fault            |
| 36-036          | Fault                    | Overtemperature                            |                                                                     |
| 36-038          | Fault                    | Overtemperature                            |                                                                     |
| 36-039          | Fault                    | Overtemperature                            |                                                                     |
| 36-040          | Fault                    | Overtemperature                            |                                                                     |
| 36-041          | Fault                    | Overtemperature                            |                                                                     |
| 36-042          | Fault                    | Overtemperature                            |                                                                     |
| 36-043          | Fault                    | Overtemperature                            |                                                                     |
| 36-044          | Fault                    | Overload                                   | Investigate the cause of the overload condition and reset the fault |
| 36-045          | Fault                    | Overload                                   |                                                                     |
| 36-046          | Fault                    | Overload                                   |                                                                     |
| 36-047          | Fault                    | DC Overvoltage                             | Inverter is off due to an overvoltage condition in the DC bus       |
| 36-048          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-049          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-050          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-051          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-052          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-053          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-054          | Fault                    | Output out of Tolerance                    |                                                                     |
| 36-055          | Fault                    | Inverter DC/AC Desaturation                | Replace the PSDR boards                                             |
| 36-056          | Fault                    | Inverter DC/AC Desaturation                |                                                                     |
| 36-057          | Fault                    | Inverter DC/AC desaturation                |                                                                     |
| 36-058          | Fault                    | Battery Contactor is Defective             | Replace the PSDR boards                                             |
| 36-059          | Fault                    | DC Bus Undervoltage                        |                                                                     |
| 36-083          | Fault                    | Battery Overvoltage EPO                    | Battery Overvoltage Emergency Power Off                             |
| 36-084          | Fault                    | Inverter Desaturation XINT                 |                                                                     |
| 36-085          | Fault                    | Inverter Desaturation Generic              |                                                                     |
| 38-014          | Fault                    | CAN Communication Lost                     | Check communication cable and DSP                                   |
| 38-016          | Fault                    | Internal Communication Failure             |                                                                     |
| 39-030          | Fault                    | EPO Active                                 |                                                                     |

 Table 4
 UPS status, warning and fault messages (continued)



| Message<br>ID # | Message<br>Type/Severity | Name                           | Description |
|-----------------|--------------------------|--------------------------------|-------------|
| 39-033          | Fault                    | Backfeed Protection Active     |             |
| 39-034          | Fault                    | Overtemperature                |             |
| 39-040          | Fault                    | SCR Gate Corrupt               |             |
| 39-041          | Fault                    | Output Overvoltage             |             |
| 39-042          | Fault                    | Output Undervoltage            |             |
| 39-043          | Fault                    | Output Frequency out of Limits |             |

 Table 4
 UPS status, warning and fault messages (continued)



## 4.0 CONNECTIVITY

## 4.1 NETWORK AND BMS CONNECTIVITY AND MONITORING

Communications cards for SNMP, Modbus, or both (Dual Protocol) are available, supporting Modbus over IP or RS-485. These cards also support browser access to the UPS's Web page, which displays critical operational values and conditions. Any of these cards can be installed in the XS3 slot. However, the unit must be configured to support the card (ManageUPS, Liebert IS-UNITY or Liebert IS-485EXI).

## 4.1.1 Determining the type of Card in Your System

The Liebert IS-UNITY-DP, the Liebert IS-485EXI and the ManageUPS cards are labeled accordingly.

Contact Vertiv<sup>™</sup> for information about installing a card if one was not factory-installed.

## 4.2 CONNECTION POINTS

**Table 5** gives details of the various combinations of connectivity solutions that can be used with the Liebert NX. Only one of the combinations may be used at a time. Other combinations may be possible. The interfaces in **Table 5** can be found on the Liebert NX.

| Interfac<br>e | Description                                                                                                                                                                                                                                  | Input/Output/Serial/<br>CAN |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| XS3           | Slot available for use with a connectivity option, typically a Liebert IS-UNITY-DP <sup>™</sup><br>Card or ManageUPS NET III Adapter for SNMP, Modbus or both or a Liebert<br>IS-485EXI may be installed for Liebert SiteScan <sup>®</sup> . | Serial                      |
| XS6           | Slot for the LIFE.net slot modem                                                                                                                                                                                                             | Serial                      |
| X3            | Standard serial interface RS232 COM - female – Available, if XS3 slot is empty or a<br>Liebert<br>IS-UNITY-DP Card or ManageUPS NET III Card is installed                                                                                    | Serial                      |
| X6            | LIFE <sup>™</sup> Services card only                                                                                                                                                                                                         | Serial                      |
| X19           | 2x15-pole screw connector for parallel UPS connection                                                                                                                                                                                        | —                           |
| X20           | RJ45 interface for synchronization with external signal                                                                                                                                                                                      | _                           |
| TB1           | 16-pole screw connector for input contacts (see <b>4.2.1 - Available Selectable Input Contacts</b> )                                                                                                                                         | Input                       |
| TB2           | 16-pole screw connector for output contacts (see <b>4.2.2 - Available Selectable Output Contacts</b> )                                                                                                                                       | Output                      |
| XT 3/8        | 4-pole screw for EPO input and output                                                                                                                                                                                                        | Input and Output            |
| XT1/2         | Not Used                                                                                                                                                                                                                                     | -                           |
| TB3           | Battery Interface and SKRU Key Status                                                                                                                                                                                                        | Input and Output            |
| TB4           | SKRU Enable Status                                                                                                                                                                                                                           | Input and Output            |

#### Table 5 Connectivity combinations



### 4.2.1 Available Selectable Input Contacts



#### NOTE

These contacts must be programmed by an Vertiv customer engineer.

| Standby Generator Set (SGS)             | Bypass and Inverter both Off (See<br>Note <b>3</b> ) |
|-----------------------------------------|------------------------------------------------------|
| Bypass Operation (See Note 1)           | Stop Battery Test (See Note <b>2</b> )               |
| Fast Power Off                          | External Output Breaker (See Note 4)                 |
| External Maintenance Bypass             | Mirrored Standby Generator Set (SGS)                 |
| Start Battery Test (See Note <b>2</b> ) | Force Rectifier Off then On                          |
| Fault Acknowledge                       | DC Ground Fault Detection                            |

#### **Notes on Selectable Input Contacts**

- 1. Activating this input contact will force the UPS to transfer from Inverter to Bypass Mode of operation. When deactivated, the UPS will automatically transfer back to Inverter Mode of operation. Selecting this function disables the *Start Inverter* and *Stop Inverter* buttons on the touchscreen LCD.
- 2. The contact must remain active at least 15 seconds to ensure that the command is accepted.
- 3. Activating this input contact switches Off both the inverter and the bypass static switch. The load will no longer be supplied. When this input contact is deactivated, the UPS switches the bypass static switch On for a short period and then the inverter. The *Start Inverter* and *Stop Inverter* buttons on the touchscreen LCD are disabled when this function is selected.
- 4. Activating this input contact allows the inverter to turn On. When deactivated, the UPS forces the inverter to turn Off.
- 5. The logic for each input contact can be inverted.
- 6. Each input contact can have a turn On delay of 0-60 seconds.
- 7. Each input contact can have a turn Off delay of 0-60 seconds.



### 4.2.2 Available Selectable Output Contacts

When output contacts configuration is "Custom," then it is possible to define the associated switch-on condition for each output contact.

The possible conditions are indicated by values description. Cyclic treatment for the output contacts is executed each 32ms.

Summary alarm (fault / warning) **Bypass Mains Failure** Inverter not On **Battery Overtemperature** Residual Battery Autonomy is Expiring SGS On (Standby Generator Set) **Rectifier or Bypass Mains Failure Battery Prewarning level** Inverter On **Battery Capacity LEVEL25** Load Supplied by Battery Battery Capacity LEVEL50 Bypass Active (AS400-like) **Battery Capacity LEVEL75** Maintenance Bypass Switch Closed Battery Capacity LEVEL100 Inverter Operation, Self-Clocked Load LEVEL25 Shutdown Command Pending Load LEVEL50 Load LEVEL75 Summary Fault Load LEVEL100 Inverter Stopped Due to Fault Load LEVEL105 Bypass Stopped Due to Fault Line Fault **Rectifier Fault** Summary Warning Summary Alarm OR Line Fault Inverter Overtemperature Warning Power loss Prewarning Imminent Shutdown Power Loss Alarm **Backfeed Fault** Battery Undervoltage Inverter Overload AC Output Ground Fault **Rectifier or Bypass Mains Failure** SGS Input Function Active Mirrored SGS Input Function **Rectifier Mains Failure** Active Eco Mode Active

#### Notes on Selectable Output Contacts

- 1. The logic for each output contact can be inverted.
- 2. Each output contact can have a turn On delay of 0 to 60 seconds.
- 3. Each output contact can have a turn Off delay of 0 to 60 seconds.



## **5.0 MAINTENANCE**

## 5.1 SAFETY PRECAUTIONS

### Observe the safety precautions in Battery Cabinet Precautions on page 2.

Observe all of the warnings below before performing any maintenance on the UPS and associated equipment. Also observe the manufacturer's safety precautions pertaining to the DC source, along with the DC source safety precautions in this section.



## NOTE

Service and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations as well as with manufacturers' specifications.



## WARNING

Risk of electric shock and high short circuit current. Can cause equipment damage, injury and death.

- Extreme caution is required when performing maintenance.
- Be constantly aware that the UPS system contains high DC as well as AC voltages. With input power Off and the DC source disconnected, high voltage at filter capacitors and power circuits should be discharged within 5 minutes. However, if a power circuit failure has occurred, you should assume that high voltage may still exist after shutdown. Check with a voltmeter before making contact.
- AC voltage will remain on the bypass and output circuit breakers and the static bypass switch, unless associated external circuit breakers are opened.
- Check for voltage with both AC and DC voltmeters before making contact.
- When the UPS system is under power, both the operator and any test equipment must be isolated from direct contact with earth ground and the UPS chassis frame by using rubber mats.
- Some components within the cabinets are not connected to the chassis ground.
- Any contact between floating circuits and the chassis is a lethal shock hazard. Use differential oscilloscopes when measuring a floating circuit.
- Exercise caution that the test instrument exterior does not make contact, either physically or electrically, with earth ground.
- In case of fire involving electrical equipment, use only carbon dioxide fire extinguishers or others approved for use in fighting electrical fires.



## WARNING

Risk of electric shock and high short circuit current. Can cause equipment damage, injury and death.

- Always identify connecting wiring before disconnecting any wiring.
- Do not substitute parts except as authorized by Vertiv.
- Keep the UPS cabinets free of foreign material, such as solder, wire cuttings, etc.
- Contact Vertiv if you are not sure of the procedures to follow or if you are unfamiliar with the circuitry.



## 5.2 VERTIV TECHNICAL SUPPORT

Startup, UPS maintenance, DC source maintenance and training programs are available for the Liebert NX through your Vertiv sales representative.

## Warranties

Contact Vertiv if you have any questions regarding the warranty on your Liebert NX UPS or the batteries.

## 5.3 ROUTINE MAINTENANCE

Become thoroughly familiar with the equipment, but at no time go beyond the specific procedures in this manual while performing maintenance or correcting a malfunction.

If you have any doubt about what must be done, call Vertiv at 1-800-543-2378 for instructions.

The UPS is designed for unattended operation, but does require some common-sense maintenance.

- Keep good records—Troubleshooting is easier if you have historical background.
- Keep it clean—Keep the UPS free of dust and moisture.
- Keep it cool—Battery systems must be kept in the range of 72-77°F (22-26°C) to meet design specifications for capacity and longevity.

The UPS will reliably meet all performance specifications and design life at temperatures up to 104°F (40°C). However, performance and longevity will be optimized when the UPS is operated at the same temperature as the batteries. Contact your local Vertiv sales representative or call 1-800-543-2378 for details.

- Keep connections tight—Tighten all connections at installation and at least annually thereafter (see **Table 8**.)
- Keep it inspected—Periodically inspect external upstream and downstream circuit breakers to ensure that the trip current settings are correct.

Become familiar with typical ambient conditions surrounding equipment so that abnormal conditions may be more quickly recognized. Know what typical meter readings are and where adjustable settings should be.

## 5.3.1 Record Log

Set up a maintenance log to record scheduled checks and any abnormal conditions.

The log should have space for all metered parameter indications including phase readings, alarm messages, UPS mode of operation, air filter replacement date and observation notes. A second log should be maintained for the DC source as directed by the DC source manufacturer.

A periodic walk-through inspection of the UPS and DC source rooms is advised to check for visible and audible indications of problems. Log the inspection, metered parameter indications and any discrepancies.

## 5.3.2 Air Filters

The air filters must be inspected and serviced on a regular schedule. The period between inspections will depend upon environmental conditions. Under normal conditions, the air filters will require cleaning or replacement approximately every two months. Abnormal or dusty conditions will require more-frequent cleaning and replacement of air filters. Inspect installations in new buildings more often, then extend the inspection period as experience dictates.



All Liebert NX models have a replaceable air filter inside the front doors. These filters can be changed while the UPS is in operation.

## NOTE

Service and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations as well as with manufacturers' specifications.



### 5.3.3 Limited Life Components

The Liebert NX has a design life well in excess of 10 years. Well-maintained units can continue to provide economic benefits for 20 years or more. Long-life components are used in the UPS wherever practical and cost-effective. However, due to the currently available component material, manufacturing technology limitations and the general function and use of the component, a few components in the Liebert UPS will have a shorter life cycle and require replacement in less than 10 years.

The following components utilized in the UPS have a limited life cycle and are specifically exempt from warranty. To prevent a wear-out failure of one of these components affecting the critical load operations, Vertiv recommends these components be periodically inspected and replaced before the expected expiration of their life cycle. The expected life of each component listed below is simply an estimate and is not a guarantee. Individual users may have site-specific requirements, maintenance and other environmental conditions that affect the length of the component's useful life cycle.

In most cases, replacement components must exactly match the original component specifications.

These replacement components are not readily available from third-party component distributors.

For assistance with specific component specifications, replacement component selection and sourcing, call 1-800-543-2378. For customers using Vertiv' preventive maintenance services, periodic inspection of these components is part of this service, as well as recommending component replacement intervals to customers to avoid unanticipated interruptions in critical load operations.

| Component                               | Expected Life  | Replace in:               |  |  |
|-----------------------------------------|----------------|---------------------------|--|--|
| Power AC Filter Capacitors              | 15 years       | 12 to 15 years            |  |  |
| Power DC Filter Capacitors              | 15 years       | 12 to 15 years            |  |  |
| Low-Profile Fans                        | > 7 years      | 5 to 6 years              |  |  |
| Air Filters                             | 1 to 3 years   | Check four times per year |  |  |
| Battery, Lithium Logic Memory<br>Backup | 10 years       | 8 to 9 years              |  |  |
| Battery, Storage                        |                |                           |  |  |
| Lead-acid Wet-cell (User Selection)     | 15 to 20 years | 12 to 15 years            |  |  |
|                                         | 5 years        | 2 to 3 years              |  |  |
| Valve-Regulated, Lead-Acid (VRLA)       | 10 years       | 3 to 4 years              |  |  |
|                                         | 20 years       | 8 to 12 years             |  |  |

Table 6UPS component service life

"Expected Life" is sometimes referred to as "Design Life."



#### 5.4 **BATTERY MAINTENANCE**



## ▲ WARNING

Risk of electric shock and high short circuit current. Can cause equipment damage, injury and death.

- These maintenance procedures will expose hazardous live parts. Refer servicing to properly trained and qualified personnel working in accordance with applicable regulations as well as with the manufacturers' specifications.
- DC fuses operate at the rated battery voltage at all times. A blown DC bus fuse indicates a serious problem. Serious injury or equipment damage can result if the fuse is replaced without knowing why it failed and without the cause corrected. Contact Vertiv for assistance.

## 5.4.1 Battery Safety Precautions

Servicing of batteries should be performed or supervised by personnel knowledgeable of batteries and the required precautions. Keep unauthorized personnel away from batteries.

When replacing batteries, use the same number and type of batteries.



## ▲ WARNING

Risk of electric shock, explosive reaction, hazardous chemicals and fire. Can cause equipment damage, injury and death.

Lead-acid batteries contain hazardous materials. Batteries must be handled, transported and recycled or discarded in accordance with federal, state and local regulations. Because lead is a toxic substance, lead-acid batteries must be recycled rather than discarded. Do not dispose of battery or batteries in a fire. The battery may explode.

Do not open or mutilate the battery or batteries. Released electrolyte is harmful to the skin and eyes. It is toxic.



## WARNING

Risk of electric shock and high short circuit current. Can cause equipment damage, injury and death.

The following precautions must be observed when working on batteries:

- Remove watches, rings and other metal objects.
- Use tools with insulated handles.
- Wear rubber gloves and boots.
- Do not lay tools or metal parts on top of batteries.
- Disconnect charging source prior to connecting or disconnecting battery terminals.
- Determine whether the battery is grounded. If it is grounded, remove source of around.
- Contact with any part of a grounded battery can result in electrical shock. The likelihood of such shock will be reduced if such grounds are removed during installation and maintenance.



# **WARNING**

Risk of explosion and fire. Can cause equipment damage, injury and death.

- Lead-acid batteries present a risk of fire because they generate hydrogen gas, which is explosive. In addition, the electrical connections must be protected against short circuits and other sources of sparks. The following procedures should be followed:
- Do not smoke near batteries.
- Do not cause flame or spark in battery area.
- Discharge static electricity from your body before touching batteries by first touching a grounded metal surface.
- After replacing battery jars in a battery cabinet, replace the retaining straps that hold the jars in place on the shelves. This will limit accidental movement of the jars and connectors should the cabinet need to be repositioned or relocated.

Regular maintenance of the battery module is an absolute necessity. Periodic inspections of battery and terminal voltages, specific gravity and connection resistance should be made. Strictly follow the procedures outlined in the battery manufacturer's manual, available on the manufacturer's Web site.

Valve-regulated lead-acid (sealed-cell) batteries do require periodic maintenance. Although maintenance of electrolyte levels is not required, visual inspections and checks of battery voltage and connection resistance should be made.

## NOTICE

Risk of improper cleaning. Can cause equipment damage.

Batteries should be cleaned with a dry cloth or a cloth lightly moistened with water. Do not use cleaners on the batteries. Solvents can make the battery cases brittle.

Because individual battery characteristics are not identical and may change over time, the UPS module is equipped with circuitry to equalize battery cell voltages. This circuit increases charging voltage to maintain flooded type battery cells at full capacity.



Risk of electric shock, explosive reaction, hazardous chemicals and fire. Can cause equipment damage, injury and death.

Do not use equalize charging with valve-regulated, lead-acid batteries. Refer to the battery manufacturer's manual, available on the manufacturer's Web site, for specific information about equalize charging.

#### Matching Battery Cabinets—Optional

Although individual battery cells are sealed (valve-regulated) and require only minimal maintenance, the Battery Cabinets should be given a periodic inspection and electrical check. Checks should be performed at least annually to ensure years of trouble-free service.

**Voltage Records**: With the Battery Cabinet DC circuit breaker closed and the connected UPS operating, measure and record battery float voltage. With the DC circuit breaker open, measure and record the nominal (open circuit) voltage. Both these measurements should be made across the final positive and negative terminal lugs. Compare these values with those shown below. The


recorded nominal voltage should be no less than the value shown; while the recorded float voltage should be within the range shown. If a discrepancy is found, contact Vertiv.

| Table 7 | Battery voltage, | nominal and float |
|---------|------------------|-------------------|
|---------|------------------|-------------------|

|                 | Battery Voltage, VDC |           |  |  |  |
|-----------------|----------------------|-----------|--|--|--|
| Number of Cells | Nominal              | Float     |  |  |  |
| 240             | 480                  | 527 - 552 |  |  |  |

Contact the factory for information about charging lithium ion batteries.

**Power Connections**: Check for corrosion and connection integrity. Inspect wiring for discolored or cracked insulation. Clean and/or retighten as required. Refer to torque specifications in **Table 8**.

**Battery Cell Terminals**: Check for discoloration, corrosion and connection integrity. Clean and tighten if necessary. NOTE that when installing a new battery, the initial torque value is 5 lb.-in. more than the retorque value. **Table 8** shows battery retorque values.

| Battery Mfr. | Battery Model #        | Retorque Value<br>in-lb (N-m) |  |  |  |
|--------------|------------------------|-------------------------------|--|--|--|
|              | UPS12-300MR            |                               |  |  |  |
|              | UPS12-350MR            |                               |  |  |  |
|              | UPS12-400MR            |                               |  |  |  |
| C2D          | UPS12-490MR            | 110 (12 /)                    |  |  |  |
| CaD          | UPS12-540MR            | 110 (12.4)                    |  |  |  |
|              | UPS12-545PLP           |                               |  |  |  |
|              | UPS12-600MR            |                               |  |  |  |
|              | UPS12-605PLP           |                               |  |  |  |
|              | HX205-FR               |                               |  |  |  |
|              | HX300-FR               | - 65 (7.3)                    |  |  |  |
|              | HX330-FR               |                               |  |  |  |
| Enorovo      | HX400-FR               |                               |  |  |  |
| Ellersys     | HX500-FR               |                               |  |  |  |
|              | HX540-FR               |                               |  |  |  |
|              | 16HX800F               | 100 (11 2)                    |  |  |  |
|              | 16HX925F               | 100 (11.3)                    |  |  |  |
|              | HR3000                 |                               |  |  |  |
|              | HR3500                 |                               |  |  |  |
| East Penn    | : Penn HR4000 65 (7.3) |                               |  |  |  |
|              | HR5000                 |                               |  |  |  |
|              | HRH5500                |                               |  |  |  |

 Table 8
 Battery retorgue values

If the system uses a different model battery, contact Vertiv for the required torque value.

To access battery cell terminals, disconnect the inter-tier cable and two shelf retaining screws. Once disconnected, insulate the cables with protective boot or electrical tape to prevent accidental shorts.

The battery shelves can be pulled out. Tighten each terminal connection to the retorque value.



When replacing a battery, the terminal connections must be cleaned and tightened. Disconnect and insulate the cables connected to the battery. Secure each battery shelf with retaining screws when maintenance is complete.

#### **Other DC Sources**

If the UPS system uses a DC source other than a factory-supplied Matching Battery Cabinet, perform maintenance on the DC source as recommended in the DC source manufacturer's maintenance manual, available on the manufacturer's Web site.



## 5.5 DETECTING TROUBLE

The operator must check the instrument readings if abnormal equipment performance is suspected. Any metered value that differs appreciably from normal could mean an impending malfunction and should be investigated.

#### 5.5.1 Items to check include:

- If the UPS has not operated on battery power during the last 10 hours, the batteries should require little charging current. Battery mimic should indicate normal DC voltage with the battery charge current no more than 1% of maximum discharge current.
- Input current on each phase should be within 10% of the average input current.
- Alarm messages indicate malfunction or impending malfunction. A daily check of the Display Screen will help to provide an early detection of problems.
- Tracing a problem to a particular section is facilitated by alarm messages and the metered parameter indications.

#### NOTICE

Risk of recurring problem. Can cause degraded performance and equipment damage. If the UPS system has an open fuse, the cause should be determined before replacing the fuse. If the cause is not corrected, it could recur. Contact Vertiv for assistance.

#### 5.6 **REPORTING A PROBLEM**

If a problem occurs within the UPS, review all alarm messages along with other pertinent data. Contact Vertiv at 1-800-543-2378 to report a problem or to request assistance.

#### 5.7 UPSTREAM FEEDER CIRCUIT BREAKER SETTING INSPECTIONS

During normal UPS operations, short-term overload current demand from the bypass source may reach 10 times the UPS output current rating. This overload current demand may be caused by the magnetizing inrush current of one or more downstream transformers (e.g., power distribution units) or faults on downstream branch circuits. The instantaneous trip point(s) of the upstream bypass feeder breaker(s) must be set to support these temporary overloads. The magnitude of short-term overload bypass current demand is typically six to eight times the UPS current rating, but must be determined by analysis on a per-site basis. This analysis, generally known as an End-to-End Fault Coordination Study, must be done by a registered professional engineer experienced in this activity and familiar with local codes and related requirements.

Vertiv strongly recommends periodic inspections of the bypass feeder breaker instantaneous trip settings, as well as the module input (rectifier) feeder breaker trip settings, to ensure that they are correct. For a variety of reasons, although typically during circuit breaker maintenance procedures by others, trip settings have been known to be inadvertently left improperly set. Correct trip setting of these circuit breakers is most important to achieving high-availability from your Liebert UPS system.

For further information regarding proper trip settings for your feeder breakers, call 1-800-543-2378.

NOTE

The instantaneous trip setting of the breaker feeding the UPS bypass input should be high enough to accommodate short-duration overloads. The bypass static switch power path inside the UPS can draw up to 10 times the system's rated current for up to three cycles.

## NOTE

While Vertiv can provide typical guidelines, the responsibility for the proper breaker trip settings outside the Vertiv-manufactured UPS equipment resides with the owner. Contact Vertiv at 1-800-543-2378 for further information.

## 5.8 AC OUTPUT GROUND FAULT DETECTION

A phase-to-ground fault that occurs while the UPS is supporting the load from a DC source will cause the UPS's inverter and battery to float. The return path for fault current will be interrupted and the return path for AC ground faults on the output of the UPS will be interrupted.

The Liebert NX 225-600 is equipped with special circuitry to detect such faults and display a warning on the touchscreen LCD. The warning may also be communicated through a programmable output contact to third-party devices.

When such an event occurs, the load should be removed from the UPS output as quickly as possible to avoid damage that could occur if power returns suddenly. Remove power to the UPS input terminals by opening the input breakers. Power should stay disconnected until the fault has been corrected.

## ΝΟΤΕ

An AC phase-to-ground fault will clear under normal conditions with utility power present and the rectifier powering the inverter.



# 6.0 SPECIFICATIONS

#### 6.1 DC SOURCES

#### 6.1.1 Battery Operation

The separate battery manufacturer's manual, available on the manufacturer's Web site, provides the necessary information for the installation, operation and maintenance of the battery. Use the battery manual in conjunction with this manual.

The float charge voltage for a battery is equal to the number of cells in series making up the battery multiplied by the charge voltage for each cell.

Because the charging voltage level is critical to proper battery operation, refer to your battery manual, available on the manufacturer's Web site, for information about your system.

For models with nominal 240-cell battery, the DC bus nominal float voltage range for VRLA batteries is 2.15 to 2.30VPC.

Battery voltage at end of discharge is 1.65VPC at the UPS terminals. The number of battery cells required ranges from 228 to 246, depending on the application.

### 6.2 OTHER DC SOURCES

The separate DC source manufacturer's manual, available on the manufacturer's Web site, provides the necessary information for the installation, operation and maintenance of the DC source. Use the DC source manual in conjunction with this manual. Liebert NX UPS's with firmware version 1.09 and later, minimum walk-in time is 2.5 seconds.

## 6.3 BATTERY DC GROUND FAULT DETECTION

Vertiv offers battery DC ground fault detection solutions as an option for the Liebert NX 225-600kVA UPS. Some jurisdictions and customers require that there be a system to detect battery DC ground faults in ungrounded DC systems. Generally, this applies to DC systems that are field-wired to the UPS. This includes both battery and flywheel systems. The National Electrical Code does not require DC systems (such as Liebert Matching Battery Cabinets), which are attached directly to the UPS and do not require field-wiring, to have this capability.

However, local codes may have different interpretations, and customers may also have internal requirements for this capability. Because of this, Vertiv recommends that customers understand all of the applicable requirements to determine whether a DC ground fault detection system is needed.

For more information on Liebert battery ground fault solutions, contact your Liebert representative.

## 6.4 ENVIRONMENTAL CONDITIONS

#### Table 9Environmental specifications

| Parameter                                     | Specification                                                                                                                                          |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Enclosure                                     | The UPS is housed in a NEMA-1 enclosure. The enclosure is designed for indoor use only and is not to be subjected to falling objects or precipitation. |  |  |
| Recommended Operating Temperature,<br>°F (°C) | 77 (25) ambient                                                                                                                                        |  |  |
| Maximum Operating Temperature, °F<br>(°C)     | 104 (40) ambient (design temperature) without derating; (see Notes <b>2</b> and <b>3</b> ).                                                            |  |  |
| Minimum Operating Temperature, °F<br>(°C)     | 32 (0)                                                                                                                                                 |  |  |
| Storage Temperature, °F (°C)                  | -13 to 158 (-25 to 70)                                                                                                                                 |  |  |
| Typical Battery Temperature<br>Requirements   | Average annual temperature must not exceed 80°F (27°C). Peak temperature must not exceed 109°F (43°C). See battery manufacturer's recommendations.     |  |  |
| Relative Humidity                             | 0 to 95% without condensation                                                                                                                          |  |  |
| Operating Elevation, ft, (m)                  | Sea level to 3300 (1000) without derating                                                                                                              |  |  |
| Storage Elevation, ft, (m)                    | Sea level to 50,000 (15,240)                                                                                                                           |  |  |
| Audible Noise, 5ft (1.5m) from Unit           | 68 dBA, typical                                                                                                                                        |  |  |

#### **Notes on Environmental Specifications**

- 1. This category of electronic equipment is agency rated for use in an atmosphere free of conductive particles. Some industrial facilities may require a room air filtration system to keep the UPS free of excess moisture and contaminants.
- 2. The UPS system is designed to operate continuously at 104°F (40°C). However, design equipment life expectancy will be extended with lower temperatures (77°F [25°C] is recommended).
- 3. Ambient temperature is the maximum ambient temperature during any 24-hour period. For operation at higher temperatures, consult your Vertiv sales representative or call Vertiv at 1-800-543-2378.
- 4. Exercise care during installation to ensure unimpeded airflow through the UPS.
- 5. For operation at higher elevations, consult your Vertiv sales representative or call Vertiv at 1-800-543-2378.

#### 6.5 THERMAL RUNAWAY PROTECTION

The Liebert NX 225-600kVA UPS is equipped with the capability to meet the requirements of the International Fire Code 2012 Section 608.3. This is included in systems with firmware release 1.09 or later, shipped in 2015 or later. Contact your Vertiv representative for information about firmware upgrades.

To determine the firmware version in your Liebert NX 225-600 UPS, go to display screen and press the Help button, then press About. The revision number will be displayed.

The thermal runaway protection system works as follows:

- 1. The UPS still features a temperature-compensated charging system, which reduces charge current as battery temperature rises above a base level, which is 20°C. The UPS monitors the temperature sensors in all battery cabinets, and reports and displays the highest value reported on its user display and BMS interface.
- 2. When the temperature of any battery cabinet exceeds a threshold, (configurable, 30°C is the default) a High Battery Temperature warning will be generated and displayed on the user display, BMS interface and LIFE Services<sup>™</sup> messaging. The UPS stops compensating at this point.
- 3. When a second threshold is exceeded by any of the battery cabinets, the charger is turned Off. (This should be set to 40-43°C by Vertiv to comply with warranty requirements). The UPS will display:
  - The High Battery Temperature message;
  - A message that Battery Temperature is Over Limit;
  - Messages will also indicate that the charger is switched Off, and the charger icon on the touchscreen LCD will be gray;
  - Messages will also be generated and displayed on the BMS interface and LIFE Services<sup>™</sup> messaging.



- 4. The customer has a choice of responses, based on requirements and battery configuration:
  - Stop the charger (charger will restart when the temperature drops to 2°C below the threshold (38-41°C, depending on where the threshold is set);
  - OR
  - Stop the charger and open the breaker on the overtemperature cabinet only; the UPS will then resume charging the remaining battery cabinets normally.
  - The selection must be programmed by Vertiv.
- 5. If the UPS does not detect a functioning temperature sensor, it will display the message: *Probe not connected or Broken*.
- 6. Configurable options with this system include:
  - Activating contacts to interface with external customer devices;
  - Adding a hydrogen sensor to the UPS by configuring an input contact to stop charging upon reaching a
    given hydrogen level;
  - Connecting a fan sensor to the UPS to stop charging if a ventilation fan in the battery space fails.

#### Table 10Electrical specifications

| Input Parameters                                   |                                                                |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Input Voltage to Rectifier, VAC, 3-phase, 3-wire   | 480V                                                           |  |  |  |
| Input Voltage to Bypass, VAC, 3-phase, 3-wire      | 480V                                                           |  |  |  |
| Input Voltage Range, VAC                           | +10% to -30%                                                   |  |  |  |
| Input Frequency, Hz                                | 60                                                             |  |  |  |
| Permissible Input Frequency Range, Hz              | 55-65                                                          |  |  |  |
| Rectifier Power Walk-In, sec                       | 2.5 to 90 seconds adjustable                                   |  |  |  |
| DC Parameters                                      |                                                                |  |  |  |
| Battery Type                                       | VRLA (Valve Regulated Lead Acid)<br>or FLA (Flooded Lead Acid) |  |  |  |
| DC Bus Range, VDC                                  | 396-600                                                        |  |  |  |
| DC Float Voltage, VPC                              | 2.27                                                           |  |  |  |
| End-Cell Voltage, VPC                              | 1.65 (for VRLA / FLA)                                          |  |  |  |
| DC Ripple Voltage in Float and Const V Ch. mode, % | <1 (RMS Value) < 3.4% Vpp                                      |  |  |  |
| Output Parameters                                  |                                                                |  |  |  |
| Output Voltage, 3-phase, 3-wire                    | 480V                                                           |  |  |  |
| Output Voltage Regulation, %                       | < 1% (3-Phase RMS Average)                                     |  |  |  |
| Output Frequency, Hz                               | 60                                                             |  |  |  |
| Output Frequency Regulation, %                     | ± 0.1                                                          |  |  |  |
| Capacity to Handle Step Load, %                    | 0-100 or 100-0                                                 |  |  |  |
| Voltage Displacement, ° el                         | 120° ±1° el (With Unbalanced Load)                             |  |  |  |
| Compliance to FCC Class-A                          | Standard                                                       |  |  |  |

#### Table 11 Physical specifications

| Liebert NX Model Size                       | 225                                        | 250    | 300               | 400    | 500    | 600     |
|---------------------------------------------|--------------------------------------------|--------|-------------------|--------|--------|---------|
| Physical Parameters and Standards, in (mm)  | Physical Parameters and Standards, in (mm) |        |                   |        |        |         |
| Width                                       |                                            | 53.4   |                   |        | 90.7   |         |
| Depth                                       | 33.7                                       |        |                   |        |        |         |
| Height                                      | 78.6                                       |        |                   |        |        |         |
| Weight, Unpackaged, approximate, lb. (kg)   | 2450 (1110)                                |        | 4450 lb. (2019kg) |        |        |         |
| Maximum Heat Dissipation, Full Load, BTU/hr | 41,000                                     | 45,000 | 54,000            | 72,000 | 90,000 | 108,000 |
| Color                                       | Black (ZP-7021)                            |        |                   |        |        |         |
| Front Door Opening (for serviceability)     | More than 90°                              |        |                   |        |        |         |
| Degree of Protection for UPS Enclosure      | IP 20 (with and without front door open)   |        |                   |        |        |         |
| Minimum Clearance, Top, In. (mm)            | 24 (610)                                   |        |                   |        |        |         |
| Minimum Clearance, Back, In. (mm)           | 0                                          |        |                   |        |        |         |
| Minimum Clearance, Sides, In. (mm)          | 0                                          |        |                   |        |        |         |
| Cable Entrance Location                     | Top or Bottom                              |        |                   |        |        |         |
|                                             | UL, 1778, 4th Ed.                          |        |                   |        |        |         |
|                                             | CSA 22.2 107.3                             |        |                   |        |        |         |
|                                             | FCC Part 15, Class A                       |        |                   |        |        |         |
|                                             | IEC62040-2, Level 4, Criteria A            |        |                   |        |        |         |
|                                             | EN61000-4-3, Level 3, Criteria A           |        |                   |        |        |         |
| Standards & Conformities                    | EN61000-4-6, Level 4, Criteria A           |        |                   |        |        |         |
|                                             | EN61000-2-2, Criteria A                    |        |                   |        |        |         |
|                                             | EN61000-4-4, Level 4, Criteria A           |        |                   |        |        |         |
|                                             | ANSI C62.41, Category A3 &B3               |        |                   |        |        |         |
|                                             | ISTA Procedure 1H                          |        |                   |        |        |         |
|                                             | WEEE                                       |        |                   |        |        |         |





VertivCo.com | Vertiv Headquarters, 1050 Dearborn Drive, Columbus, OH, 43085, USA

© 2018 Vertiv Co. All rights reserved. Vertiv and the Vertiv logo are trademarks or registered trademarks of Vertiv Co. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness herein, Vertiv Co. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions. Specifications are subject to change without notice. SL-25354\_REV5\_8-18